百科
相互独立事件的概率
相互独立事件定义
A和B中至少有一件事情发生:A∪B; A与B同时发生:A∩B,AB,如果P(A B) =P(A) P(B),称A,B 相互独立。
性质
(1)A,B独立等价于独立,其中
(2)A,B独立,则是A的对立事件。
相关试题
今天你低碳了吗?近来,国内网站流行一种名为“碳排放计算器”的软件,人们可以由此计算出自己每天的碳排放量。例如:家居用电的碳排放量(千克)= 耗电度数×0.785,汽车的碳排放量(千克)=油耗公升数×0.785等。某班同学利用寒假在两个小区逐户进行了一次生活习惯是否符合低碳观念的调查。若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”。这二族人数占各自小区总人数的比例P数据如下: (1)如果甲、乙来自A小区,丙、丁来自B小区,求这4人中恰有2人是低碳族的概率;
(2)A小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列。如果2周后随机地从A小区中任选25人,记表示25个人中低碳族人数,求E。某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响。已知学生小张只选甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示小张选修的课程门数和没有选修的课程门数的乘积。
(Ⅰ)求学生小张选修甲的概率;
(Ⅱ)记“函数f(x)=x2+ξx 为R上的偶函数”为事件A,求事件A的概率;
(Ⅲ)求ξ的分布列和数学期望。某班同学利用寒假在三个小区进行了一次生活习惯进否符合低碳观念的调查.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”。这两族人数占各自小区总人数的比例如下: (1)从A,B,C三个社区中各选一人,求恰好有2人是低碳族的概率;
(2)在B小区中随机选择20户,从中抽取的3户中“非低碳族”数量为X,求X的分布列和EX。在某学校组织的一次蓝球定点投蓝训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投三次。某同学在A处的命中率q1为0.25,在B处的命中率为q2。该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为 ξ 0 2 3 4 5 P 0.03 p1 p2 p3 p4 位于直角坐标原点的一个质点P按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为,向右移动的概率为,则质点P移动五次后位于点(1,0)的概率是 [ ]
A.
B.
C.
D.济南市有大明湖、趵突泉、千佛山、园博园4个旅游景点,一位客人游览这四个景点的概率分别是0.3,0 4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.
(Ⅰ)求ξ=0对应的事件的概率;
(Ⅱ)求ξ的分布列及数学期望。2009年4月在墨西哥暴发“甲型HIN1型流感”疫情,据检测,某公司生产的药品“达菲”和“金刚烷胺”对治疗“甲型HIN1型流感”都有效,设人们一次服用“达菲” 的有效率为,一次服用“金刚烷胺”的有效率为,服药效果均不受服药时间、服药次数、服药人的不同的影响,多次服药时一次有效即被认为有效.
(Ⅰ)甲、乙两人各在“达菲”或“金刚烷胺”中任选一种(选择哪一种药是等可能的)并服用一次,求两人均有效的概率;
(Ⅱ)任选服用过“达菲”或“金刚烷胺”的3人,记ξ为3人中对治疗“甲型HINI型流感”有效的人数,求ξ的分布列和期望.某射击游戏规定:每位选手最多射击3次;射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i(i=l,2,3)次射击时击中目标得4-i分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.
(Ⅰ)求甲恰好射击两次的概率;
(Ⅱ)设该选手甲停止射击时的得分总和为ξ,求随机变量ξ的分布列及数学期望.某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制当第一次烧制合格后方可进行第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品的合格率依次为0.5,0.6,0.4.经过第二次烧制后,甲、乙、丙三件产品的合格率依次为0.6,0.5,0.75.
(Ⅰ)求第一次烧制后恰有两件产品合格的概率;
(Ⅱ)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的分布列及期望.某学校高三年级有学生1 000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分二层)从该年级的学生中共抽查100名同学,
(Ⅰ)求甲、乙两同学都被抽到的概率,其中甲为A类同学,乙为B类同学;
(Ⅱ)测得该年级所抽查的100名同学身高(单位:厘米)频率分布直方图如下图:(ⅰ)统计方法中,同一组数据常用该组区间的中点值(例如区间[160,170)的中点值为165)作为代表。据此,计算这100名学生身高数据的期望μ及标准差σ(精确到0.1):
(ⅱ)若总体服从正态分布,以样本估计总体,据此,估计该年级身高在(158.6,181.4)范围中的学生的人数;
(Ⅲ)如果以身高达170cm作为达标的标准,对抽取的100名学生,得到下列联表:体育锻炼与身高达标2×2列联表 身高达标 身高不达标 总计 积极参加体育锻炼 40 不积极参加体育锻炼 15 总计 100 今天你低碳了吗?近来,国内网站流行一种名为“碳排放计算器”的软件,人们可以据此计算出自己每天的碳排放量.例如:家居用电的碳排放量(千克)=耗电度数×0.785,汽车的碳排放量(千克)=油耗公升数×0.785等,某班同学利用寒假在A,B两个小区逐户进行了一次生活习惯是否符合低碳观念的调查.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,这二族的人数占各自小区总人数的比例P数据如下: (Ⅰ)如果甲、乙来自A小区,丙、丁来自B小区,求这4个中恰有2人是低碳族的概率;
(Ⅱ)A小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A小区中任选25个人,记ξ表示25个人中低碳族人数,求Eξ。某省示范高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表: 根据上表:
(Ⅰ)求数学辅导讲座在周一、周三、周五都不满座的概率;
(Ⅱ)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局,
(Ⅰ)求再赛2局结束这次比赛的概率;
(Ⅱ)求甲获得这次比赛胜利的概率。某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.
(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率。某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为,甲、乙、丙三位同学每人购买了一瓶该饮料。
(I)求三位同学都没有中奖的概率;
(Ⅱ)求三位同学中至少有两位没有中奖的概率。A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为,服用B有效的概率为,
(Ⅰ)求一个试验组为甲类组的概率;
(Ⅱ)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.某工厂为了保障安全生产,每月初组织工人参加一次技能测试。甲、乙两名工人通过每次测试的概率分别是和。假设两人参加测试是否通过相互之间没有影响。
(Ⅰ)求甲工人连续3个月参加技能测试至少1次未通过的概率;
(Ⅱ)求甲、乙两人各连续3个月参加技能测试,甲工人恰好通过2次且乙工人恰好通过1次的概率;
(Ⅲ)工厂规定:工人连续2次没通过测试,则被撤销上岗资格. 求乙工人恰好参加4次测试后被撤销上岗资格的概率。红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A、乙对B、丙对C各一盘。已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5。假设各盘比赛结果相互独立。
(Ⅰ)求红队至少两名队员获胜的概率;
(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ。如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是p,电流能通过T4的概率是0.9,电流能否通过各元件相互独立。已 知T1,T2,T3中至少有一个能通过电流的概率为0.999。 (1)求p;
(2)求电流能在M与N之间通过的概率;
(3)ξ表示T1,T2,T3,T4中能通过电流的元件个数,求ξ的期望。某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮,假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于( )。 某同学参加3门课程的考试,假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为p、q(p>q),且不同课程是否取得优秀成绩相互独立,记ξ为该生取得优秀成绩的课程数,其分布列为 ξ 0 1 2 3 P a b 某射手每次射击击中目标的概率是,且各次射击的结果互不影响。
(1)假设这名射手射击5次,求恰有2次击中目标的概率;
(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;
(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3 次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分。记ξ为射手射击3次后的总得分数,求ξ的分布列。某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:
①每位参加者计分器的初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分;
②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;
③每位参加者按问题A、B、C、D顺序作答,直至答题结束.
假设甲同学对问题A、B、C、D回答正确的概率依次为,且各题回答正确与否相互之间没有影响.
(Ⅰ)求甲同学能进入下一轮的概率;
(Ⅱ)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望Eξ。已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物。血液化验结果呈阳性的即为患病动物,呈阴性即没患病。下面是两种化验方案:
方案甲:逐个化验,直到能确定患病动物为止。
方案乙:先任取3只,将它们的血液混在一起化验,若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验。
(1)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;
(2)ξ表示依方案乙所需化验次数,求ξ的期望。一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测,方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p1和p2,则 [ ] A.p1=p2
B.p1<p2
C.p1>p2
D.以上三种情况都有可能A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组,设每只小白鼠服用A有效的概率为,服用B有效的概率为。
(1)求一个试验组为甲类组的概率;
(2)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望。甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局,
(Ⅰ)求甲获得这次比赛胜利的概率;
(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望。某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min,
(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.某单位为绿化环境,移栽了甲、乙两种大树各2株,设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响,求移栽的4株大树中。
(1)至少有一株成活的概率;
(2)两种大树各成活1株的概率。在一个有奖问答的电视节目中,参赛选手顺序回答A1、A2、A3三个问题,答对各个问题所获奖金(单位:元)对应如下表: A1 A2 A3 1000 2000 3000 美国次贷危机引发2008年全球金融动荡,波及中国两大股市,甲,乙,丙三人打算趁目前股市低迷之际“抄底”。若三人商定在圈定的10支股票中各自购买一支(假定购买时每支股票的基本情况完全相同)。
(1)求甲,乙,丙三人恰好买到一支相同股票的概率;
(2)求甲,乙丙三人中至少有两人买到一支相同股票的概率。某会议室用3盏灯照明,每盏灯各使用节能灯棍一只,且型号相同.假定每盏灯能否正常照明只与灯棍的寿命有关,该型号的灯棍寿命为1年以上的概率为0.8,寿命为2年以上的概率为0.3,从使用之日起每满1年进行一次灯棍更换工作,只更换已坏的灯棍,平时不换.
(Ⅰ)在第一次灯棍更换工作中,求不需要更换灯棍的概率;
(Ⅱ)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率;
(Ⅲ)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试。已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书。现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为。假设各次考试成绩合格与否均互不影响。
(1)求他不需要补考就可获得证书的概率;
(2)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ。设进入某商场的每一位顾客购买甲商品的概率0.5,购买乙商品的概率为0.6,且顾客购买甲商品与购买乙商品相互独立,每位顾客间购买商品也相互独立.
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(Ⅲ)设ξ是进入商场的3位顾客至少购买甲、乙商品中一种的人数,求ξ的分布列及期望.一条生产线上生产的产品按质量情况分为三类:A类、B类、C类。检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C类产品或2件都是B类产品,就需要调整设备,否则不需要调整。已知该生产线上生产的每件产品为A类品,B类品和C类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响。
(Ⅰ)求在一次抽检后,设备不需要调整的概率;
(Ⅱ)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列和数学期望。甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均未命中的概率为,
(Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望。甲,乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为p(p>),且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为,
(Ⅰ)求p的值;
(Ⅱ)设ξ表示比赛停止时比赛的局数,求随机变量ξ的分布列和数学期望Eξ.甲、乙两个盒子里各放有标号为1,2,3,4的四个大小形状完全相同的小球,从甲盒中任取一小球,记下号码x后放入乙盒,再从乙盒中任取一小球,记下号码y,设随机变量X=|x-y|,
(1)求y=2的概率;
(2)求随机变量X的分布列及数学期望。某高校的自主招生考试,其数学试卷共有8道选择题,每个选择题都给出了4个选项(其中有且仅有一个选项是正确的)。评分标准规定:每题只选1项,答对得5分,不答或答错得0分。某考生每题都给出了答案,已确定有4道题的答案是正确的,而其余的题中,有两道题每题都可判断其中两个选项是错误的,有一道题可以判断其中一个选项是错误的,还有一道题因不理解题意只能乱猜。对于这8道选择题,试求:
(1)该考生得分为40分的概率;
(2)通过计算,说明该考生得多少分的可能性最大?甲、乙两名跳高运动员一次试跳2米高度成的概率分别是0.7、0.6,且每次试跳成功与否相互之间没有影响,求:
(Ⅰ)甲试跳三次,第三次才成功的概率;
(Ⅱ)甲、乙两人在第一次试跳中至少有一人成功的概率。在“自选模块”考试中,某考场的每位同学都选作了一道数学题,第一小组选《不等式选讲》的有1人,选《坐标系与参数方程》的有5人;第二小组选《不等式选讲》的有2人,选《坐标系与参数方程》的有4人。现从第一、第二两小组各任选2人分析得分情况,
(1)求选出的4 人均为选《坐标系与参数方程》的概率;
(2)设ξ为选出的4个人中选《不等式选讲》的人数,求ξ的分布列和数学期望。某校选拔若干名学生组建数学奥林匹克集训队,要求选拔过程分前后两次进行,当第一次选拔合格后方可进入第二次选拔,两次选拔过程相互独立。根据甲、乙、丙三人现有的水平,第一次选拔,甲、乙、丙三人合格的概率依次为0.5、0.6、0.4,第二次选拔,甲、乙、丙三人合格的概率依次为0.6、0.5、0.5。
(1)求第一次选拔后甲、乙两人中只有甲合格,而乙不合格的概率;
(2)分别求出甲、乙、丙三人经过前后两次选拔后合格入选的概率;
(3)求经过前后两次选拔后,恰有一人合格入选的概率。袋中装有形状、大小完全相同的2个白球和3个黑球,
(1)采取放回抽样方式,从中依次摸出两个球,求两球颜色不同的概率;
(2)采取不放回抽样方式,从中依次摸出两个球,求至少摸出1个白球的概率.某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走①号公路堵车的概率为,不堵车的概率为;汽车走②号公路堵车的概率为p,不堵车的概率为1-p。由于客观原因甲、乙两辆汽车走①号公路,丙汽车走②号公路,且三辆车是否堵车相互之间没有影响。
(1)若三辆汽车中恰有一辆汽车被堵的概率为,求汽车走公路②堵车的概率;
(2)在(1)的条件下,求三辆汽车中被堵车辆的个数ξ的分布列和数学期望。一项试验有两套方案,每套方案试验成功的概率都是,试验不成功的概率都是。甲随机地从两套方案中选取一套进行这项试验,共试验了3次,每次试验相互独立,且要从两套方案中等可能地选择一套,
(1)求3次试验都选择了同一套方案且都试验成功的概率;
(2)求3次试验都选择了第一套方案且至少试验成功1次的概率.某科技公司遇到一个技术难题,紧急成立甲、乙两个攻关小组,按要求各自单独进行为期一个月的技术攻关,同时决定对攻关期满就攻克技术难题的小组给予奖励,已知此技术难题在攻关期满时被甲小组攻克的概率为,被乙小组攻克的概率为,
(1)求攻关期满时至少有一个小组已攻克技术难题的慨率;
(2)设a表示攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的绝对值,记“函数f(x)=(-a)x在定义域内单调递减”为事件A,求事件A发生的概率。最新试题- 1鸡卵的结构:(1)名称:①________②_________③__________④_________⑤_______
- 2用哪种试剂可以检测蔬菜、水果中维生素C含量的多少[ ]A.高锰酸钾溶液 B.碘液 C.氢氧化钙溶液
- 3在一个容积为500 mL的密闭容器中,充入5 mol H2和2 mol CO。在一定条件下,发生如下反应,经过5 min
- 4书面表达(满分25分)假设你是李华,你校英语报将举行“What would happen without compute
- 5如图所示,两上下底面平行的滑块重叠在一起,置于固定的、倾角为θ的斜面上,滑块A、B的质量分别为M、m,A与斜面间的动摩擦
- 6下面是李商隐的诗《银河吹笙》,中间两联残缺,请根据律诗的特点,选出恰当的一项( )怅望银河吹玉笙,楼寒院冷接平明。重衾
- 7下列过程中,不直接依赖细胞膜的流动性就能完成的是[ ]A.胰岛B细胞分泌胰岛素B.mRNA与游离核糖体的结合C.
- 8 几千年来中华民族提倡孝道,人们在生活中创造了一些有关孝道的熟语。下面两则熟语,选择一则,解说它的意思,并造句。 (
- 9某研究者查阅到光绪二十七年一份吏部档案,残缺不全,原文有:“上年□月间,□□入都,本署即被占据,迨洋兵撤退,检查署内所存
- 10如图,下列条件中,能判定DE∥AC的是[ ]A.∠EDC=∠EFCB.∠AFE=∠ACDC.∠3=∠4D.∠1=
热门考点- 1细长轻绳下端栓一小球构成单摆,在悬挂点正下方12摆长处有一个能挡住摆线的钉子A,如图所示,现将单摆向左方拉开一个小角度,
- 2已知双曲线的左、右焦点分别为,若双曲线上存在一点使,则该双曲线的离心率的取值范围是 。
- 3You grow fast . The dress will you .[ ]A.
- 4下列现象属于反射的是( )A.向日葵的花盘总朝向太阳转动B.吞噬病菌C.受惊吓后,心脏的跳动加快D.人体心脏节律性的收
- 5“菲特”来临,申城遭遇狂风暴雨,莘庄南广场地铁一号线入口出现积水,正值节后上班高峰时段,不少乘客无奈涉水而行。有人瞄准“
- 6下列各句中,没有语病的一项是( )(3分)A 贫困市民和下岗职工不再把干个体看作是丢脸的事,他们已经坦然的加入到个体
- 7下列关于太阳大气的描述正确的是[ ]A.太阳大气由里向外为:光球、色球、日冕B.光球中有耀斑C.耀斑是太阳活动周
- 8做人工呼吸前要清除口鼻内的污物..______.
- 9同温同压下,等质量的O2和CO2相比较,下列叙述正确的是( )A.体积比为8:11B.分子个数之比为11: 12C.
- 10 《辞海》作为广大群众最为信赖的大型工具书,每十年修订一次,在编纂过程中要吐故纳新。2009版《辞海》中取消了“独立自
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.