当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点,若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根...
题目
题型:四川省中考真题难度:来源:
如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点,若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°。
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值。
答案
解:(1)解方程得,

则点A的坐标为,点B的坐标为
过点D作轴于D1,则D1为AB的中点,
∴D1的坐标为
又因为

∴D的坐标为
令抛物线对应的二次函数解析式为
∵抛物线过点

故抛物线对应的二次函数解析式为(或写成);
(2)∵
又∵

令点C的坐标为则有
∵点C在抛物线上,

化简得解得(舍去),
故点C的坐标为
(3)由(2)知

过A作





即此时的最大值为
核心考点
试题【如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点,若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系中,点A(0,6),点B是x轴上的一个动点,连接AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90°,得到线段BC,过点B作x轴的垂线交直线AC于点D,设点B坐标是(t,0)。
(1)当t=4时,求直线AB的解析式;
(2)当t>0时,用含t的代数式表示点C的坐标及△ABC的面积;
(3)是否存在点B,使△ABD为等腰三角形?若存在,请求出所有符合条件的点B的坐标;若不存在,请说明理由。
题型:浙江省中考真题难度:| 查看答案
如图,四边形ABCD是矩形,A、B两点在x轴的正半轴上, C、D两点在抛物线y=-x2+6x上,设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为(    )。

题型:云南省中考真题难度:| 查看答案
某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
(1)请建立销售价格y(元)与周次x之间的函数关系;
(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为z=-(x-8)2+12,1≤x≤11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?
题型:重庆市中考真题难度:| 查看答案
如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点。
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大,若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由。
题型:重庆市中考真题难度:| 查看答案
如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点B,A(,0),且△AOB∽△BOC。
(1)求C点坐标、∠ABC的度数及二次函数y=ax2+bx+3的关系式;
(2)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由。
题型:江苏省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.