当前位置:高中试题 > 数学试题 > 椭圆 > 已知椭圆C中心为坐标原点O,焦点在x轴上,短轴长为221,离心率为12(1)求椭圆C的方程;(2)直线l:y=kx+m与椭圆C交于不同两点P,Q,且OP⊥OQ,...
题目
题型:不详难度:来源:
已知椭圆C中心为坐标原点O,焦点在x轴上,短轴长为2


21
,离心率为
1
2

(1)求椭圆C的方程;
(2)直线l:y=kx+m与椭圆C交于不同两点P,Q,且OP⊥OQ,求点O到直线l的距离.
答案
(1)设椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0)

由题意可得





e=
c
a
=
1
2
2b=2


21
a2=b2+c2
,解得





b=


21
c=


7
a2=28

∴椭圆C的方程为
x2
28
+
y2
21
=1

(2)设A(x1,y1),B(x2,y2).
联立





y=kx+m
x2
28
+
y2
21
=1
,消去y得到(3+4k2)x2+8kmx+4m2-84=0.
∵△>0,∴64k2m2-16(3+4k2)(m2-21)=0,化为m2=21+28k2.(*)
x1+x2=
-8km
3+4k2
x1x2=
4m2-84
3+4k2
.(**)
∵OP⊥OQ,∴


OP


OQ
=0

∴x1x2+y1y2=0.
又y1y2=(kx1+m)(kx2+m),
(1+k2)x1x2+km(x1+x2)+m2=0
把(**)代入可得
(1+k2)(4m2-84)
3+4k2
+
-8k2m2
3+4k2
+m2=0

化为m2=12+12k2=12(1+k2),∴
|m|


1+k2
=2


3

∴点O到直线l的距离d=
|m|


1+k2
=2


3
核心考点
试题【已知椭圆C中心为坐标原点O,焦点在x轴上,短轴长为221,离心率为12(1)求椭圆C的方程;(2)直线l:y=kx+m与椭圆C交于不同两点P,Q,且OP⊥OQ,】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
设θ是三角形的一个内角,且sinθ+cosθ=则方程x2sinθ-y2cosθ=1表示的曲线是(  )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:攀枝花三模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A.焦点在x轴上的双曲线B.焦点在x轴上的椭圆
C.焦点在y轴上的双曲线D.焦点在y轴上的椭圆
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点是F(-


3
,0)
,且离心率e=


3
2

(1)求椭圆C方程;
(2)(8分)过点A(0,-2)且不与y轴垂直的直线l与椭圆C相交于不同的两点P,Q,若


OM
=


OP
+


OQ
所对应的M点恰好落在椭圆上,求直线l的方程.
已知椭圆的中心是坐标原点O,它的短轴长为2,右焦点为F,直线l:x=2与x轴相交于点E,


FE
=


OF
,过点F的直线与椭圆相交于A,B两点,点C和点D在l上,且ADBCx轴.
(Ⅰ)求椭圆的方程及离心率;
(Ⅱ)求证:直线AC经过线段EF的中点.
已知圆P:x2+y2-2y-3=0,抛物线C以圆心P为焦点,以坐标原点为顶点.
(1)求抛物线C的方程;
(2)设圆P与抛物线C在第一象限的交点为A,过A作抛物线C的切线与y轴的交点为Q,动点M到P、Q两点距离之和等于6,求M的轨迹方程.
设F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,且椭圆上一点P(1,
3
2
)
到F1,F2两点距离之和等于4.
(Ⅰ)求此椭圆方程;
(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N,且线段MN的垂直平分线过定点G(
1
8
,0)
,求k的取值范围.