当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知函数y=f(x)(x∈D),方程f(x)=x的根x0称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导...
题目
题型:解答题难度:一般来源:不详
已知函数y=f(x)(x∈D),方程f(x)=x的根x0称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导出的数列.
设函数g(x)=
4x+2
x+3
,h(x)=
ax+b
cx+d
(c≠0,ad-bc≠0,(d-a)2+4bc>0)

(1)求函数g(x)的不动点x1,x2
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证{
an-x1
an-x2
}
是等比数列,并求
lim
n→∞
an

(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期.
答案
(1)
4x+2
x+3
=x,即x2-x-2=0,得x1=-1,x2=2,
所以函数g(x)的不动点为x1=-1,x2=2.
(2):a1=3,an+1=g(an)=
4an+2
an+3
,设cn=
an+1
an-2

则cn+1=
an+1+1
an+1-2
=
5an+5
2an-4
=
5
2
an+1
an-2
=
5
2
cn,c1=
a1+1
a1-2
=4.
所以数列{
an+1
an-2
}是等比数列,公比为
5
2
,首项为4.
an+1
an-2
=4•(
5
2
)
n-1
得an=
8•5n-1+2n-1
4•5n-1-2n-1

lim
n→∞
an
=
lim
n→∞
8•5n-1+2n-1
4•5n-1-2n-1
=
lim
n→∞
8+(
2
5
)
n-1
4-(
2
5
)
n-1
=2.
(3):h(x)=
ax+b
cx+d
=x,即cx2+(d-a)x-b=0.
因为△=(d-a)2+4ac>0,所以该方程有两个不相等的实数根x1,x2
b1=p,bn+1=h(bn)=
abn+b
cbn+d

bn+1-x1
bn+1-x2
=
abn+b
cbn+d
-
ax1+b
cx1+d
abn+b
cbn+d
-
ax2+b
cx2+d
=
cx2+d
cx1+d
bn-x1
bn-x2

则{
bn-x1
bn-x2
}是等比数列,首项为
p-x1
p-x2
,公比为
cx2+d
cx1+d

因为
bn-x1
bn-x2
=
p-x1
p-x2
cx2+d
cx1+d
n-1,所以
bn+T-x1
bn+T-x2
=
p-x1
p-x2
cx2+d
cx1+d
n+T-1
数列{bn}为周期数列的充要条件是(
cx2+d
cx1+d
n-1=(
cx2+d
cx1+d
n+T-1,即(
cx2+d
cx1+d
T=1.
故|
cx2+d
cx1+d
|=1,但x1≠x2,从而cx2+d=-cx1-d.x1+x2=-
2d
c
=-
d-a
c

故d=-a.
核心考点
试题【已知函数y=f(x)(x∈D),方程f(x)=x的根x0称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知y=f(x)是偶函数,当x>0时,f(x)=x+
4
x
,且当x∈[-3,-1]时,n≤f(x)≤m恒成立,则n-m的最小值是______.
题型:填空题难度:简单| 查看答案
已知函数f(x)=
1-a+lnx
x
,a∈R
(I)求f(x)的极值;
(II)若lnx-kx<0在(0,+∞)上恒成立,求k的取值范围;
(III)已知x1>0,x2>0,且x1+x2<e,求证:x1+x2>x1x2
题型:解答题难度:一般| 查看答案
函数y=f(x)为奇函数,且f(1)+f(2)-4=f(-1)+f(-2)+2,则f(1)+f(2)=______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=
x+1-a
a-x
(x≠a)

(1)当f(x)的定义域为[a+
1
2
,a+1]
时,求f(x)的值域;
(2)试问对定义域内的任意x,f(2a-x)+f(x)的值是否为一个定值?若是,求出这个定值;若不是,说明理由;
(3)设函数g(x)=x2+|(x-a)f(x)|,若
1
2
≤a≤
3
2
,求g(x)的最小值.
题型:解答题难度:一般| 查看答案
若函数f(x)=(x+a)(bx+2a)(常数a、b∈R)是偶函数,且它的值域为(-∞,4],求该函数的解析式.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.