当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 定义在R上的偶函数f(x)在x∈[1,2]上是增函数,且具有性质:f(x+1)=f(1-x),则该函数(  )A.在[-1,0]上是增函数B.在[-1,-12]...
题目
题型:单选题难度:一般来源:不详
定义在R上的偶函数f(x)在x∈[1,2]上是增函数,且具有性质:f(x+1)=f(1-x),则该函数(  )
A.在[-1,0]上是增函数
B.在[-1,-
1
2
]
上是增函数在[-
1
2
,0]
上是减函数
C.在[-1,0]上是减函数
D.在[-1,-
1
2
]
上是减函数在[-
1
2
,0]
上是增函数
答案
∵f(x+1)=f(1-x),
故函数的图象关于直线x=1对称
又∵f(x)是定义在R上的偶函数
且f(x)在x∈[1,2]上是增函数,
故f(x)在x∈[0,1]是减函数,
f(x)在x∈[-1,0]上是增函数,
故选A
核心考点
试题【定义在R上的偶函数f(x)在x∈[1,2]上是增函数,且具有性质:f(x+1)=f(1-x),则该函数(  )A.在[-1,0]上是增函数B.在[-1,-12]】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
设f(x)是奇函数,当x>0时,f(x)=-xlg(1+x),那么当x<0时,f(x)的表达式是(  )
A.xlg(1-x)B.xlg(1+x)C.-xlg(1-x)D.-xlg(1+x)
题型:单选题难度:一般| 查看答案
已知f(x)为定义在(-∞,0)∪(0,+∞)上的奇函数,x>0时,f(x)=1-
2
x

(1)求函数f(x)的解析式,
(2)判断函数f(x)在(0,+∞)的单调性并用定义证明.
题型:解答题难度:一般| 查看答案
已知f(x)=loga(
1-x
1+x
)
,(a>0,≠0)
(1)求函数f(x)的定义域,
(2)判断f(x)在其定义域上的奇偶性,并予以证明,
(3)若a=2,求f(x)>0的解集.
题型:解答题难度:一般| 查看答案
已知函数f(x)=|x+1|+|x-2|-a,若对任意实数x都有f(x)>0成立,则实数a的取值范围为______.
题型:填空题难度:一般| 查看答案
设函数y=f(x),x∈R.
(1)若函数y=f(x)为偶函数并且图象关于直线x=a(a≠0)对称,求证:函数y=f(x)为周期函数.
(2)若函数y=f(x)为奇函数并且图象关于直线x=a(a≠0)对称,求证:函数y=f(x)是以4a为周期的函数.
(3)请对(2)中求证的命题进行推广,写出一个真命题,并予以证明.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.