当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知函数f(x)=(log14x)2-log14x+5,x∈[2,4],则当x=______,f(x) 有最大值 ______;当x=______时,f(x)有...
题目
题型:填空题难度:一般来源:不详
已知函数f(x)=(log
1
4
x)
2
-log
1
4
x+5
,x∈[2,4],则当x=______,f(x) 有最大值 ______;当x=______时,f(x)有最小值.
答案
logx
1
4
=t,
∵x∈[2,4],
∴t∈[-1,-
1
2
],
f(x)=t2-t+5=(t-
1
2
)
2
+
19
4

∴t=-
1
2
,即x=2时,f(x)有最小值,t=-1,即 x=4,f(x)有最大值为7;
故答案为4、7、2.
核心考点
试题【已知函数f(x)=(log14x)2-log14x+5,x∈[2,4],则当x=______,f(x) 有最大值 ______;当x=______时,f(x)有】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
设f(x)=x3+x2+x(x∈R),又若a∈R,则下列各式一定成立的是(  )
A.f(a)≤f(2a)B.f(a2)≥f(a)C.f(a2-1)>f(a)D.f(a2+1)>f(a)
题型:单选题难度:简单| 查看答案
设奇函数f(x)的定义域为R,且满足f(x)=-f(x+
3
2
),若f(-1)≤1,f(5)=
2a-3
a+1
,则a的取值范围是______.
题型:填空题难度:一般| 查看答案
已知f(x)的定义域为{x∈R|x≠0},且f(x)是奇函数,当x>0时,f(x)=-x2+bx+c,若f(1)=f(3),f(2)=2
(1)求b,c的值;
(2)求f(x)在x<0时的表达式;
(3)若关于x的方程f(x)=ax,(a∈R)有解,求a的取值范围.
题型:解答题难度:一般| 查看答案
给出下列说法:
①幂函数的图象一定不过第四象限;
②奇函数图象一定过坐标原点;
③y=x2-2|x|-3的递增区间为[1,+∞);
④定义在R上的函数f(x)对任意两个不等实数a、b,总有
f(a)-f(b)
a-b
>0
成立,则f(x)在R上是增函数;
f(x)=
1
x
的单调减区间是(-∞,0)∪(0,+∞).
正确的有 ______.
题型:填空题难度:一般| 查看答案
设f(x)=log 
1
2
1-ax
x-1
(a为常数)的图象关于原点对称
(1)求a的值;
(2)判断函数f(x)在区间(1,+∞)的单调性并证明;
(3)若对于区间[3,4]上的每一个x的值,f(x)>(
1
2
x+m恒成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.