当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,动点P从A出发以2厘米/秒的速度沿AB方向向点B运动,动点Q从...
题目
题型:四川省中考真题难度:来源:
如图在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,动点P从A出发以2厘米/秒的速度沿AB方向向点B运动,动点Q从点B出发以3厘米/秒的速度沿B→C→D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止,设动点运动的时间为t秒。
(1)求边BC的长;
(2)当t为何值时,PC与BQ相互平分;
(3)连接PQ,设△PBQ的面积为y,探求y与t的函数关系式,求t为何值时,y有最大值?最大值是多少?
答案

解:(1)作于点E,
如图(1)所示,则四边形为矩形,

又∵


中,由勾股定理得:
(2)假设PC与BQ相互平分,

是平行四边形(此时Q在CD上),


解得,即秒时,PC与BQ相互平分;
(3)①当Q在BC上,即时,作于F,则




当t=3秒时,
有最大值为厘米2
②当Q在CD上,即时,


易知S随t的增大而减小,
故当秒时,
有最大值为

综上,当时,有最大值为




核心考点
试题【如图在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,动点P从A出发以2厘米/秒的速度沿AB方向向点B运动,动点Q从】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点,若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°。
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值。
题型:四川省中考真题难度:| 查看答案
如图,在平面直角坐标系中,点A(0,6),点B是x轴上的一个动点,连接AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90°,得到线段BC,过点B作x轴的垂线交直线AC于点D,设点B坐标是(t,0)。
(1)当t=4时,求直线AB的解析式;
(2)当t>0时,用含t的代数式表示点C的坐标及△ABC的面积;
(3)是否存在点B,使△ABD为等腰三角形?若存在,请求出所有符合条件的点B的坐标;若不存在,请说明理由。
题型:浙江省中考真题难度:| 查看答案
如图,四边形ABCD是矩形,A、B两点在x轴的正半轴上, C、D两点在抛物线y=-x2+6x上,设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为(    )。

题型:云南省中考真题难度:| 查看答案
某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
(1)请建立销售价格y(元)与周次x之间的函数关系;
(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为z=-(x-8)2+12,1≤x≤11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?
题型:重庆市中考真题难度:| 查看答案
如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点。
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大,若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由。
题型:重庆市中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.