当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x2+bx+c经过坐标原点O和x轴上另一点E(4,0...
题目
题型:不详难度:来源:
如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x2+bx+c经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=
11
4
时,判断点P是否在直线ME上,并说明理由;
②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.
答案
(1)因抛物线y=-x2+bx+c经过坐标原点O(0,0)和点E(4,0),
故可得c=0,b=4,
所以抛物线的解析式为y=-x2+4x(1分),
由y=-x2+4x,y=-(x-2)2+4,
得当x=2时,该抛物线的最大值是4;(2分)

(2)①点P不在直线ME上;
已知M点的坐标为(2,4),E点的坐标为(4,0),
设直线ME的关系式为y=kx+a;
于是得,





4k+a=0
2k+a=4

解得:





k=-2
a=8

所以直线ME的关系式为y=-2x+8;(3分)
由已知条件易得,当t=
11
4
时,OA=AP=
11
4
,P(
11
4
11
4
)(4分)
∵P点的坐标不满足直线ME的关系式y=-2x+8;
∴当t=
11
4
时,点P不在直线ME上;(5分)
②以P、N、C、D为顶点的多边形面积可能为5
∵点A在x轴的非负半轴上,且N在抛物线上,
∴OA=AP=t;
∴点P、N的坐标分别为(t,t)、(t,-t2+4t)(6分)
∴AN=-t2+4t(0≤t≤3),
∴AN-AP=(-t2+4t)-t=-t2+3t=t(3-t)≥0,
∴PN=-t2+3t(7分)
(ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD,
∴S=
1
2
DC•AD=
1
2
×3×2=3;
(ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形
∵PNCD,AD⊥CD,
∴S=
1
2
(CD+PN)•AD=
1
2
[3+(-t2+3t)]×2=-t2+3t+3(8分)
当-t2+3t+3=5时,解得t=1、2(9分)
而1、2都在0≤t≤3范围内,故以P、N、C、D为顶点的多边形面积为5
综上所述,当t=1、2时,以点P,N,C,D为顶点的多边形面积为5,
当t=1时,此时N点的坐标(1,3)(10分)
当t=2时,此时N点的坐标(2,4).(11分)
说明:(ⅱ)中的关系式,当t=0和t=3时也适合,(故在阅卷时没有(ⅰ),只有(ⅱ)也可以,不扣分)
核心考点
试题【如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x2+bx+c经过坐标原点O和x轴上另一点E(4,0】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
某商店经销全国大学生运动会吉祥物“UU”玩具,“UU”玩具每个进价60元,每个玩具不得低于80元出售.销售“UU”玩具的单价m(元/个)与销售数量n(个)之间的函数关系如图所示.
(1)试求表示线段AB的函数的解析式,并求出当销售数量n=20时的单价m的值;
(2)写出该店当一次销售n(n>10)个时,所获利润w(元)与n(个)之间的函数关系式:
(3)店长小明经过一段时间的销售发现:卖26个赚的钱反而比卖30个赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他条件不变的情况下,店长应把最低价每个80元至少提高到多少?
题型:不详难度:| 查看答案
如图,抛物线y=ax2-2x+c经过直线y=x-3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)⊙M是过A、B、C三点的圆,连接MC、MB、BC,求劣弧CB的长;(结果用精确值表示)
(3)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标.(结果用精确值表示)
题型:不详难度:| 查看答案
已知:抛物线y=-x2+(2m+2)x-(m2+4m-3)
(1)抛物线与x轴有两个交点,求m的取值范围;
(2)当m为不小于零的整数,且抛物线与x轴的两个交点是整数点时,求此抛物线的解析式;
(3)若设(2)中的抛物线的顶点为A,与x轴的两个交点中右侧的交点为B,M为y轴上一点,且MA=MB,求M的坐标.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°.
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.
题型:不详难度:| 查看答案
如图所示,在梯形ABCD中,已知ABCD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为x轴,过D且垂直于AB的直线为y轴建立平面直角坐标系.
(1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L;
(3)若P是抛物线的对称轴L上的点,那么使△PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.