题目
题型:不详难度:来源:
(1)抛物线与x轴有两个交点,求m的取值范围;
(2)当m为不小于零的整数,且抛物线与x轴的两个交点是整数点时,求此抛物线的解析式;
(3)若设(2)中的抛物线的顶点为A,与x轴的两个交点中右侧的交点为B,M为y轴上一点,且MA=MB,求M的坐标.
答案
∴△=b2-4ac>0
即:(2m+2)2-4×(-1)×[-(m2+4m-3)]>0
解得,m<2(2分)
(2)∵m为不小于零的整数,
∴m=0或m=1(3分)
当m=0时,y=-x2+2x+3与x轴的交点是(-1,0),(3,0);(4分)
当m=1时,y=-x2+4x-2与x轴的交点不是整数点,舍去;(5分)
综上所述这个二次函数的解析式是y=-x2+2x+3;
(3)设M(0,y),连接MA,MB,
过点A作AC⊥y轴,垂足为C;
∵MA=MB
∴AC2+CM2=OM2+OB2
即:1+(4-y)2=y2+32(6分)
解得,y=1(7分)
∴M(0,1).(8分)
核心考点
试题【已知:抛物线y=-x2+(2m+2)x-(m2+4m-3)(1)抛物线与x轴有两个交点,求m的取值范围;(2)当m为不小于零的整数,且抛物线与x轴的两个交点是整】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.
(1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L;
(3)若P是抛物线的对称轴L上的点,那么使△PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)
21 |
4 |
11 |
2 |
(1)求此二次函数的解析式并画出这个二次函数的图象;
(2)求线段AB的中垂线的函数解析式.
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:s=-x2+
1 |
2 |
提出新问题:
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题:
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:y=2(x+
1 |
x |
解决问题:
借鉴我们已有的研究函数的经验,探索函数y=2(x+
1 |
x |
(1)实践操作:填写下表,并用描点法画出函数y=2(x+
1 |
x |