当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图所示,一个运动员推铅球,铅球在点A处出手,出手时球离地面约53m.铅球落地点在B处,铅球运行中在运动员前4m处(即OC=4)达到最高点,最高点高为3m.已知...
题目
题型:不详难度:来源:
如图所示,一个运动员推铅球,铅球在点A处出手,出手时球离地面约
5
3
m
.铅球落地点在B处,铅球运行中在运动员前4m处(即OC=4)达到最高点,最高点高为3m.已知铅球经过的路线是抛物线,根据如图所示的直角坐标系,你能算出该运动员的成绩吗?
答案
能.
∵OC=4,CD=3,
∴顶点D坐标为(4,3),
设y=a(x-4)2+3,
把A
5
3
代入上式,得
5
3
=a(0-4)2+3,
∴a=-
1
12

∴y=-
1
12
(x-4)2+3,
即y=-
1
12
x2+
2
3
x+
5
3

令y=0,得-
1
12
x2+
2
3
x+
5
3
=0,
∴x1=10,x2=-2(舍去).
故该运动员的成绩为10m.
核心考点
试题【如图所示,一个运动员推铅球,铅球在点A处出手,出手时球离地面约53m.铅球落地点在B处,铅球运行中在运动员前4m处(即OC=4)达到最高点,最高点高为3m.已知】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,已知抛物线y=
3
4
x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=
3
4t
x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
(1)填空:点C的坐标是______,b=______,c=______;
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.
题型:不详难度:| 查看答案
如图,抛物线y=ax2+bx(a>0)与双曲线y=
k
x
相交于点A,B.已知点B的坐标为(-2,-2),点A在第一象限内,且tan∠AOx=4.过点A作直线ACx轴,交抛物线于另一点C.
(1)求双曲线和抛物线的解析式;
(2)计算△ABC的面积;
(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积?若存在,请你写出点D的坐标;若不存在,请你说明理由.
题型:不详难度:| 查看答案
已知抛物线y=ax2+bx+c经过(-1,10),(1,4),(2,7)三点,求这个函数的解析式.
题型:不详难度:| 查看答案
在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1).动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止.两点运动时的速度都是1cm/s.而当点P到达点A时,点Q正好到达点C.设P,Q同时从点B出发,经过的时间为t(s)时,△BPQ的面积为y(cm2)(如图2).分别以x,y为横、纵坐标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN.
(1)分别求出梯形中BA,AD的长度;
(2)写出图3中M,N两点的坐标;
(3)分别写出点P在BA边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在答题卷的图4(放大了的图3)中补全整个运动中y关于t的函数关系的大致图象.
题型:不详难度:| 查看答案
如图,点A为y轴正半轴上一点,A,B两点关于x轴对称,过点A任作直线交抛物线y=
2
3
x2
于P,Q两点.
(1)求证:∠ABP=∠ABQ;
(2)若点A的坐标为(0,1),且∠PBQ=60°,试求所有满足条件的直线PQ的函数解析式.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.