当前位置:初中试题 > 数学试题 > 二次函数的应用 > 在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1).动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止.两点运动...
题目
题型:不详难度:来源:
在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1).动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止.两点运动时的速度都是1cm/s.而当点P到达点A时,点Q正好到达点C.设P,Q同时从点B出发,经过的时间为t(s)时,△BPQ的面积为y(cm2)(如图2).分别以x,y为横、纵坐标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN.
(1)分别求出梯形中BA,AD的长度;
(2)写出图3中M,N两点的坐标;
(3)分别写出点P在BA边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在答题卷的图4(放大了的图3)中补全整个运动中y关于t的函数关系的大致图象.
答案
(1)设动点出发t秒后,点P到达点A且点Q正好到达点C时,BC=BA=t,
则S△BPQ=
1
2
×t×6=30,
所以t=10(秒).
则BA=10(cm),
过点A作AH⊥BC于H,
则四边形AHCD是矩形,
∴AD=CH,CD=AH=6cm,
在Rt△ABH中,BH=8cm,
∴CH=2cm,
∴AD=2cm;

(2)可得坐标为M(10,30),N(12,30);

(3)当点P在BA边上时,
y=
1
2
×t×tsinB=
1
2
t2×
6
10
=
3
10
t2(0≤t<10);
当点P在DC边上时,
y=
1
2
×10×(18-t)=-5t+90(12<t≤18);
图象见下.
核心考点
试题【在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1).动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止.两点运动】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,点A为y轴正半轴上一点,A,B两点关于x轴对称,过点A任作直线交抛物线y=
2
3
x2
于P,Q两点.
(1)求证:∠ABP=∠ABQ;
(2)若点A的坐标为(0,1),且∠PBQ=60°,试求所有满足条件的直线PQ的函数解析式.
题型:不详难度:| 查看答案
已知:如图,AB是⊙O的直径,CD是⊙O的一条非直径的弦,且ABCD,连接AD和BC,
(1)AD和BC相等吗?为什么?
(2)如果AB=2AD=4,且A、B、C、D四点在同一抛物线上,请在图中建立适当的直角坐标系,求出该抛物线的解析式.
(3)在(2)中所求抛物线上是否存在点P,使得S△PAB=
1
2
S四边形ABCD?若存在,求出P的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
附加题:已知二次函数y=ax2+bx+c的图象G和x轴有且只有一个交点A,与y轴的交点为B(0,4),且ac=b.
(1)求该二次函数的解析表达式;
(2)将一次函数y=-3x的图象作适当平移,使它经过点A,记所得的图象为L,图象L与G的另一个交点为C,求△ABC的面积.
题型:不详难度:| 查看答案
已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴相交于点E,点B(-1,0),P是AC上的一个动点(P与点A、C不重合)
(1)求点A、E的坐标;
(2)若y=-
6


3
7
x2+bx+c过点A、E,求抛物线的解析式;
(3)连接PB、PD,设L为△PBD的周长,当L取最小值时,求点P的坐标及L的最小值,并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.
题型:不详难度:| 查看答案
如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,-3);
(1)求抛物线的对称轴及k的值;
(2)抛物线的对称轴上是否存在一点P,使得|PB-PC|的值最大?若存在,求出点P的坐标;
(3)如果点M是抛物线在第三象限的一动点;当M点运动到何处时,M点到AC的距离最大?求出此时的最大距离及M的坐标.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.