当前位置:高中试题 > 数学试题 > 合情推理与演译推理 > 由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为三角形内角平分线交于一...
题目
题型:不详难度:来源:
由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为三角形内角平分线交于一点,且这个点是三角形内切圆的______.
答案
在由平面几何的性质类比推理空间立体几何性质时,我们常用的思路是:
由平面几何中点的性质,类比推理空间几何中线的性质;
由平面几何中线的性质,类比推理空间几何中面的性质;
由平面几何中面的性质,类比推理空间几何中体的性质;
或是将一个二维平面关系,类比推理为一个三维的立体关系,
故类比面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,推断:
这个点是三角形内切圆的 圆心
故答案为:圆心.
核心考点
试题【由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为三角形内角平分线交于一】;主要考察你对合情推理与演译推理等知识点的理解。[详细]
举一反三
由“等腰三角形的两腰相等”可以类比推出正棱锥的类似属性是______.
题型:不详难度:| 查看答案
“金导电、银导电、铜导电、铁导电,所以一切金属都导电”.此推理方法是(  )
A.完全归纳推理B.类比推理
C.归纳推理D.演绎推理
题型:不详难度:| 查看答案
二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,观察发现S′=l;三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)V=
4
3
πr3,观察发现V′=S.则四维空间中“超球”的三维测度V=8πr3,猜想其四维测度W=______.
题型:郑州二模难度:| 查看答案
在△ABC中,若∠A<∠B则a<b,其中大前提为:______.
题型:不详难度:| 查看答案
等差数列有如下性质:若an是等差数列,则数列bn=
a1+a2+…+an
n
也是等差数列.类比上述性质,相应地,若cn是正项等比数列,则数列dn=______也是等比数列.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.