当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > 某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):...
题目
题型:不详难度:来源:
某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(1)指出这组数据的众数和中位数;
(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;
(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.
答案
(1)由茎叶图得到所有的数据从小到大排,8.6出现次数最多,
∴众数:8.6;中位数:8.75;
(2)设Ai表示所取3人中有i个人是“极幸福”,至多有1人是“极幸福”记为事件A,则P(A)=P(A0)+P(A1)=
C312
C316
+
C14
C212
C316
=
121
140

(3)ξ的可能取值为0、1、2、3.P(ξ=0)=(
3
4
)3=
27
64
P(ξ=1)=
C13
1
4
(
3
4
)2=
27
64
P(ξ=2)=
C23
(
1
4
)2
3
4
=
9
64
P(ξ=3)=(
1
4
)3=
1
64

ξ的分布列为
解析
核心考点
试题【某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
ξ0123
P
27
64
27
64
9
64
1
64
ξ0123
P(
3
4
)3
C13
(
1
4
)1(
3
4
)2
C23
(
1
4
)2(
3
4
)1
(
1
4
)3
(本小题满分12分)
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.
(I)求从甲、乙两组各抽取的人数;          
(II)求从甲组抽取的工人中恰有1名女工人的概率;
(III)记表示抽取的3名工人中男工人数,求的分布列及数学期望.
(本小题满分12分)
四个大小相同的小球分别标有数字把它们放在一个盒子中,从中任意摸出两个小球,它们的标号分别为,记随机变量.
(1)求随机变量时的概率;
(2)求随机变量的概率分布列及数学期望。
(本小题满分12分)
2008年北京奥运会乒乓球比赛将产生男子单打、女子单打、男子团体、女子团体共四枚金牌,保守估计中国乒乓球男队获得每枚金牌的概率均为,中国乒乓球女队获得每枚金牌的概率均为.
(1)求按此估计中国乒乓球女队比中国乒乓球男队多获得一枚金牌的概率;
(2)记中国乒乓球队获得金牌的数为,按此估计的分布列和数学期望
袋中有3个红球,7个白球。从中无放回的任取5个,取到几个红球就得几分,则得分的均值是:          
有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各学校做问卷调查.某中学AB两个班各被随机抽取5名学生接受问卷调查,A班5名学生得分为:5、8、9、9、9;B班5名学生得分为:6,7,8,9,10.
(1)请你估计AB两个班中哪个班的问卷得分要稳定一些;
(2)如果把B班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率.