当前位置:高中试题 > 数学试题 > 离散型随机变量及其分布列 > 某射击运动员向一目标射击,该目标分为3个不同部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.(1)若射击4次,每次击...
题目
题型:不详难度:来源:
某射击运动员向一目标射击,该目标分为3个不同部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.
(1)若射击4次,每次击中目标的概率为
1
3
且相互独立.设ξ表示目标被击中的次数,求ξ的分布列和数学期望E(ξ);
(2)若射击2次均击中目标,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求事件A发生的概率.
答案
(1)依题意知ξ~B(4,
1
3
)
,ξ的分布列
核心考点
试题【某射击运动员向一目标射击,该目标分为3个不同部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.(1)若射击4次,每次击】;主要考察你对离散型随机变量及其分布列等知识点的理解。[详细]
举一反三
ξ01234
P
16
81
32
81
24
81
8
81
1
81
对某电子元件进行寿命追踪调查,情况如表:
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
寿命/小时100~200200~300300~400400~500500~600
个数2030804030
甲、乙两人同时参加奥运志愿者选拔赛的考试,已知在备选的10道题中,甲能答对其中的6道题,乙能答对其中的8道题.规定每次考试都从备选题中随机抽出3道题进行测试,至少答对2道题才能入选.
(I)求甲答对试题数ξ的分布列及数学期望;
(II)求甲、乙两人至少有一人入选的概率.
在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为
5
6
4
5
3
4
1
3
,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第三轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率;
(Ⅲ)该选手在选拔过程中回答过的问题的个数记为X,求随机变量X的分布列和期望.
一个暗箱中有形状和大小完全相同的3只白球与2只黑球,每次从中取出一只球,取到白球得2分,取到黑球得3分.甲从暗箱中有放回地依次取出3只球.
(1)写出甲总得分ξ的分布列;
(2)求甲总得分ξ的期望E(ξ).
一袋中装有6个同样大小的黑球,编号分别为1,2,3,4,5,6,现从中随机取出3个球,用X表示取出球的最大号码,求X的分布列.