当前位置:高中试题 > 数学试题 > 椭圆 > 如果一个椭圆的长轴长是短轴长的2倍,那么这个椭圆的离心率为(  )A. B.C.D....
题目
题型:广州一模难度:来源:
如果一个椭圆的长轴长是短轴长的2倍,那么这个椭圆的离心率为(  )
答案
核心考点
试题【如果一个椭圆的长轴长是短轴长的2倍,那么这个椭圆的离心率为(  )A. B.C.D.】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
题型:揭阳二模难度:| 查看答案
题型:上海难度:| 查看答案
题型:不详难度:| 查看答案
题型:武汉模拟难度:| 查看答案
题型:北京难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A. B.
C.D.
如图,线段AB过y轴负半轴上一点M(0,a),A、B两点到y轴距离的差为2k.
(Ⅰ)若AB所在的直线的斜率为k(k≠0),求以y轴为对称轴,且过A、O、B三点的抛物线的方程;
(Ⅱ)设(1)中所确定的抛物线为C,点M是C的焦点,若直线AB的倾斜角为60°,又点P在抛物线C上由A到B运动,试求△PAB面积的最大值.魔方格
(1)求右焦点坐标是(2,0),且经过点(-2,-


2
)的椭圆的标准方程.
(2)已知椭圆C的方程是
x2
a2
+
y2
b2
=1(a>b>0).设斜率为k的直线l交椭圆C于A、B两点,AB的中点为M.证明:当直线l平行移动时,动点M在一条过原点的定直线上.
(3)利用(2)所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.魔方格
如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=


3
2
,F1、F2分别为椭圆C的左、右焦点,A(0,b),且


F1A


F2A
=-2过左焦点F1作直线l交椭圆于P1、P2两点.
(1)求椭圆C的方程;
(2)若直线l的倾斜角a∈[
π
3
3
],直线OP1,OP2与直线x=-
4


3
3
分别交于点S、T,求|ST|的取值范围.魔方格
已知椭圆C的中心在原点,焦点在x轴上,经过点(3,-


5
)
的直线l与向量(-2,


5
)平行且通过椭圆C的右焦点F,交椭圆C于A、B两点,又


AF
=2


FB

(1)求直线l的方程;
(2)求椭圆C的方程.
如图,已知椭圆的长轴A1A2与x轴平行,短轴B1B2在y轴上,中心M(0,r)(b>r>0
(Ⅰ)写出椭圆方程并求出焦点坐标和离心率;
(Ⅱ)设直线y=k1x与椭圆交于C(x1,y1),D(x2,y2)(y2>0),直线y=k2x与椭圆次于G(x3,y3),H(x4,y4)(y4>0).求证:
k1x1x2
x1+x2
=
k1x3x4
x3+x4

(Ⅲ)对于(Ⅱ)中的在C,D,G,H,设CH交x轴于P点,GD交x轴于Q点,求证:|OP|=|OQ|
(证明过程不考虑CH或GD垂直于x轴的情形)魔方格