当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 三棱锥P—ABC中,△PAC是边长为4的等边三角形,△ABC为等腰直角三角形,∠ACB=90°,平面PAC⊥平面ABC,D、E分别为AB、PB的中点.(1)求证...
题目
题型:不详难度:来源:
三棱锥P—ABC中,△PAC是边长为4的等边三角形,△ABC为等腰直角三角形,∠ACB=90°,平面PAC⊥平面ABC,D、E分别为AB、PB的中点.
(1)求证:AC⊥PD;
(2)求二面角E—AC—B的正切值;



 
(3)求三棱锥P—CDE与三棱锥P—ABC的体积之比. 
答案
(1)见解析(2)(3)
解析



 
(1)取AC中点O,∵△PAC为等边三角形,∴PO⊥AC,又∵面PAC⊥面ABC,PO面PAC,
∴PO⊥面ABC,连结OD,则OD//BC,
∴DO⊥AC,
由三垂线定理知AC⊥PD.
(2)连接OB,过E作EF⊥OB于F,
又∵面POB⊥面ABC,∴EF⊥面ABC,
过F作FG⊥AC,连接EG,由三垂线定理知EG⊥AC,
∴∠EGF即为二面角E—AC—B的平面角

 
(3)由题意知

.
核心考点
试题【三棱锥P—ABC中,△PAC是边长为4的等边三角形,△ABC为等腰直角三角形,∠ACB=90°,平面PAC⊥平面ABC,D、E分别为AB、PB的中点.(1)求证】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
四棱锥的底面为正方形,底面上的点.
(1)求证:无论点上如何移动,都有
(2)若//平面,求二面角的余弦值.
题型:不详难度:| 查看答案
如图所示,在正方体中,上的点、的中点.
(Ⅰ)求直线与平面所成角的正弦值;
 (Ⅱ)若直线//平面,试确定点的位置.
题型:不详难度:| 查看答案
(12分)如图,在梯形中,的中点,将沿折起,使点到点的位置,使二面角的大小为
(1)求证:
(2)求直线与平面所成角的正弦值
题型:不详难度:| 查看答案
如图,四棱锥PABCD的底面是矩形,侧面PAD
是正三角形,且侧面PAD⊥底面ABCDE为侧棱PD的中点.
(I)试判断直线PB与平面EAC的关系
(文科不必证明,理科必须证明);
(II)求证:AE⊥平面PCD
(III)若ADAB,试求二面角APCD
的正切值.
题型:不详难度:| 查看答案
如图,梯形ABCD中,CD//ABEAB的中点,将△ADE沿DE折起,使点A折到点P的位置,且二面角的大小为1200
(I)求证:
(II)求直线PD与平面BCDE所成角的大小;
(III)求点D到平面PBC的距离.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.