当前位置:高中试题 > 数学试题 > 数列综合 > 对于一个有限数列P={P1,P2,…,Pn}P的“蔡查罗和”定义为S1+S2+…+Snn,其中Sk=P1+P2+…+Pk(1≤k≤n).若一个99项的数列{P1...
题目
题型:宝鸡模拟难度:来源:
对于一个有限数列P={P1,P2,…,Pn}P的“蔡查罗和”定义为
S1+S2+…+Sn
n
,其
中Sk=P1+P2+…+Pk(1≤k≤n).若一个99项的数列{P1,P2,…,P99}的“蔡查罗和”为1000,则100项的数列{1,P1,P2,…,P99}“蔡查罗和”为(  )
A.990B.991C.992D.993
答案
由“蔡查罗和”定义,
{P1,P2,,P99}的“蔡查罗和”为
S1+S2++S99
99
=1000

∴S1+S2++S99=99000,
则100项的数列{1,P1,P2,,P99}“蔡查罗和”为
1+(1+S1)+(1+S2)++(1+S99)
100
=991.
故选B.
核心考点
试题【对于一个有限数列P={P1,P2,…,Pn}P的“蔡查罗和”定义为S1+S2+…+Snn,其中Sk=P1+P2+…+Pk(1≤k≤n).若一个99项的数列{P1】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
设数列{an}的前n项和为Sn,且Sn=(1+λ)-λan,其中λ为常数,且λ≠-1,0,n∈N+
(1)证明:数列{an}是等比数列.
(2)设数列{an}的公比q=f(λ),数列{bn}满足b1=
1
2
,bn=f(bn-1)(n∈N+,n≥2),求数列{bn}的通项公式.
(3)设λ=1,Cn=an(
1
bn
-1)
,数列{Cn}的前n项和为Tn,求证:当n≥2时,2≤Tn<4.
题型:不详难度:| 查看答案
已知数列an满足a1=
1
4
an=
an-1
(-1)nan-1-2
(n≥2,n∈N)

(1)求数列an的通项公式an
(2)设bn=
1
a2n
,求数列bn的前n项和Sn
(3)设cn=ansin
(2n-1)π
2
,数列cn的前n项和为Tn.求证:对任意的n∈N*Tn
4
7
题型:深圳二模难度:| 查看答案
各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N*,有2Sn=2pan2+pan-p(p∈R)
(1)求常数p的值;
(2)求数列{an}的通项公式;
(3)记bn=
4Sn
n+3
2n
,求数列{bn}的前n项和T.
题型:湖北模拟难度:| 查看答案
数列{an}满足a1=a2=1,an+an+1+an+2=cos
2nπ
3
(n∈N*)
,若数列{an}的前n项和为Sn,则S2013的值为(  )
A.2013B.671C.-671D.-
671
2
题型:闵行区一模难度:| 查看答案
定义:我们把满足an+an-1=k(n≥2,k是常数)的数列叫做等和数列,常数k叫做数列的公和.若等和数列{an}的首项为1,公和为3,则该数列前2010项的和S2010=______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.