当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 若定义在区间D上的函数y=f(x)对于区间D上任意x1,x2都有不等式12[f(x1)+f(x2)]≤f(x1+x22)成立,则称函数y=f(x)在区间D上的凸...
题目
题型:解答题难度:一般来源:不详
若定义在区间D上的函数y=f(x)对于区间D上任意x1,x2都有不等式
1
2
[f(x1)+f(x2)]≤f(
x1+x2
2
)
成立,则称函数y=f(x)在区间D上的凸函数.
(I)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(II)对(I)的函数y=f(x),若|f(1)|≤1,|f(2)|≤2,|f(3)|≤3,求|f(4)|取得最大值时函数y=f(x)的解析式;
(III)定义在R上的任意凸函数y=f(x),当q,p,m,n∈N*且p<m<n<q,p+q=m+n,证明:f(p)+f(q)≤f(m)+f(n).
答案
(I)证明:对任意x1,x2∈R,当a<0,
有[f(x1)+f(x2)]-2f(
x1+x2
2
)=ax12+bx1+c+ax22+bx2+c-2[a(
x1+x2
2
2+b(
x1+x2
2
)+c]=ax12+ax22-
1
2
a(x12+x22+2x1x2)=
1
2
a(x1-x22             (3分)
∴当a<0时,f(x1)+f(x2)≤2f(
x1+x2
2
),即
f(x1)+f(x2)
2
≤f(
x1+x2
2

当a<0时,函数f(x)是凸函数.
(2)因为|f(1)|≤1,|f(2)|≤2,|f(3)|≤3,
所以





-1≤a+b+c≤1
-2≤4a+2b+c≤2
-3≤9a+3b+c≤3

又f(4)=16a+4b+c
设16a+4b+c=x(a+b+c)+y(4a+2b+c)+z(9a+3b+c)
所以





x+4y+9z=16
x+2y+3z=4
x+y+z=1

解得x=1,y=-3,z=3
所以f(4)=f(1)-3f(2)+3f(3)
所以-16≤f(4)≤16
所以f(4)的最大值为16





a+b+c=1
4a+2b+c=-2
9a+3b+c=3
取得
解得a=4,b=-15,c=12,
(III)因为p<m<n<q,p+q=m+n,y=f(x)为凸函数,
所以f(p)+f(q)≤2f(p+q)=2f(m+n)
f(m)+f(n))≤2f(m+n)
因为y=f(x)为凸函数,
所以f(p)+f(q)≤f(m)+f(n).
核心考点
试题【若定义在区间D上的函数y=f(x)对于区间D上任意x1,x2都有不等式12[f(x1)+f(x2)]≤f(x1+x22)成立,则称函数y=f(x)在区间D上的凸】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)满足f(ax-1)=lg
x+2
x-3
(a≠0)

(1)求f(x)的表达式;
(2)求f(x)的定义域;
(3)判定f(x)的奇偶性与实数a之间的关系,并说明理由.
题型:解答题难度:一般| 查看答案
已知函数y=f(x)(x∈D),方程f(x)=x的根x0称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导出的数列.
设函数g(x)=
4x+2
x+3
,h(x)=
ax+b
cx+d
(c≠0,ad-bc≠0,(d-a)2+4bc>0)

(1)求函数g(x)的不动点x1,x2
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证{
an-x1
an-x2
}
是等比数列,并求
lim
n→∞
an

(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期.
题型:解答题难度:一般| 查看答案
已知y=f(x)是偶函数,当x>0时,f(x)=x+
4
x
,且当x∈[-3,-1]时,n≤f(x)≤m恒成立,则n-m的最小值是______.
题型:填空题难度:简单| 查看答案
已知函数f(x)=
1-a+lnx
x
,a∈R
(I)求f(x)的极值;
(II)若lnx-kx<0在(0,+∞)上恒成立,求k的取值范围;
(III)已知x1>0,x2>0,且x1+x2<e,求证:x1+x2>x1x2
题型:解答题难度:一般| 查看答案
函数y=f(x)为奇函数,且f(1)+f(2)-4=f(-1)+f(-2)+2,则f(1)+f(2)=______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.