当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知f (x)=2sin(x+θ2)cos(x+θ2)+23cos2(x+θ2)-3.(1)化简f (x)的解析式;(2)若0≤θ≤π,求θ使函数f (x)为偶...
题目
题型:解答题难度:一般来源:不详
已知f (x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2


3
cos2(x+
θ
2
)-


3

(1)化简f (x)的解析式;
(2)若0≤θ≤π,求θ使函数f (x)为偶函数;
(3)在(2)成立的条件下,求满足f (x)=1,x∈[-π,π]的x的集合.
答案
(1)f(x)=sin(2x+θ)+2


3
×
1+cos(2x+θ)
2
-


3

=sin(2x+θ)+


3
cos(2x+θ)
=2sin(2x+θ+
π
3
);
(2)要使f (x)为偶函数,则必有f(-x)=f(x),
∴2sin(-2x+θ+
π
3
)=2sin(2x+θ+
π
3
),即-sin[2x-(θ+
π
3
)]=sin(2x+θ+
π
3
),
整理得:-sin2xcos(θ+
π
3
)+cos2xsin(θ+
π
3
)=sin2xcos(θ+
π
3
)+cos2xsin(θ+
π
3

即2sin2xcos(θ+
π
3
)=0对x∈R恒成立,
∴cos(θ+
π
3
)=0,又0≤θ≤π,
则θ=
π
6

(3)当θ=
π
6
时,f(x)=2sin(2x+
π
2
)=2cos2x=1,
∴cos2x=
1
2

∵x∈[-π,π],
∴x=±
π
6

则x的集合为{x|x=±
π
6
}.
核心考点
试题【已知f (x)=2sin(x+θ2)cos(x+θ2)+23cos2(x+θ2)-3.(1)化简f (x)的解析式;(2)若0≤θ≤π,求θ使函数f (x)为偶】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)=
2x-1
1+2x
(a∈R)

(I)若a=2,且f(x)=-
3


2
-2
2
,求x的值;
(II)若f(x)为奇函数,求a的值;
(III)当a=5时,函数f(x)的图象是否存在对称中心,若存在,求其对称中心;若不存在,请说明理由.
题型:解答题难度:一般| 查看答案
(理)函数f(x)=
m-2sinx
cosx
在区间(0,
π
2
)
上单调递减,则实数m的取值范围为______.
题型:填空题难度:一般| 查看答案
已知数列{an},定义其倒均数是Vn=
1
a1
+
1
a2
+…+
1
an
n
,n∈N*

(1)若数列{an}倒均数是Vn=
n+2
2
,求an

(2)若等比数列{bn}的公比q=2,其倒均数为Vn,问是否存在正整数m,使得当n≥m(n∈N*)时,nVn
15
8b1
恒成立,若存在,求出m的最小值;若不存在,说明理由.
题型:解答题难度:一般| 查看答案
已知y=f(x)是定义域为[-6,6]的奇函数,且当x∈[0,3]时是一次函数,当x∈[3,6]时是二次函数,又f(6)=2,当x∈[3,6]时,f(x)≤f(5)=3.求f(x)的解析式.
题型:解答题难度:一般| 查看答案
已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈D
,其中0<a<b.
(1)当D=(0,+∞)时,设t=
x
a
+
b
x
,f(x)=g(t),求y=g(t)的解析式及定义域;
(2)当D=(0,+∞),a=1,b=2时,求f(x)的最小值;
(3)设k>0,当a=k2,b=(k+1)2时,1≤f(x)≤9对任意x∈[a,b]恒成立,求k的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.