当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知函数f(x)=loga1-mxx-1在定义域D上是奇函数,(其中a>0且a≠1).(1)求出m的值,并求出定义域D;(2)判断f(x)在(1,+∞)上的单调...
题目
题型:解答题难度:一般来源:金山区一模
已知函数f(x)=loga
1-mx
x-1
在定义域D上是奇函数,(其中a>0且a≠1).
(1)求出m的值,并求出定义域D;
(2)判断f(x)在(1,+∞)上的单调性,并加以证明;
(3)当x∈(r,a-2)时,f(x)的值的范围恰为(1,+∞),求a及r的值.
答案
(1)因为f(x)是奇函数,所以f(-x)=-f(x),
所以loga
1-mx
x-1
=loga
-x-1
1+mx
,…(2分)
即1-m2x2=1-x2对一切x∈D都成立,…(3分)
所以m2=1,m=±1,…(4分)
由于
1-mx
x-1
>0,所以m=-1…(5分)
所以f(x)=loga
1+x
x-1
,D=(-∞,-1)∪(1,+∞)…(6分)
(2)当a>1时,f(x)=loga
1+x
x-1
,任取x1,x2∈(1,+∞),x1<x2,…(7分)
则f(x1)-f(x2)=loga
1+x1
x1-1
-loga
1+x2
x2-1
=loga
2
x1-1
+1)-loga
2
x2-1
+1)…(9分)
由于x1,x2∈(1,+∞),x1<x2,所以
2
x1-1
+1>
2
x2-1
+1,得f(x1)>f(x2),…(10分)
【注】只要写出x1,x2∈(1,+∞),x1<x2,f(x1)-f(x2)=…=…,得出f(x1)>f(x2)即可.
即f(x)在(1,+∞)上单调递减…(11分)
同理可得,当0<a<1时,f(x)在(1,+∞)上单调递增 …(13分)
(3)因为x∈(r,a-2),定义域D=(-∞,-1)∪(1,+∞),
1°当r≥1时,则1≤r<a-2,即a>3,…(14分)
所以f(x)在(r,a-2)上为减函数,值域恰为(1,+∞),所以f(a-2)=1,…(15分)
即loga
1+a-2
a-2-1
=loga
a-1
a-3
=1,即
a-1
a-3
=a,…(16分)
所以a=2+


3
且r=1 …(18分)
2°当r<1时,则(r,a-2)⊈(-∞,-1),所以0<a<1
因为f(x)在(r,a-2)上为增函数,
所以f(r)=1,a-2=-1,
解得a=1与a>0且a≠1矛盾(舍) …(20分)
核心考点
试题【已知函数f(x)=loga1-mxx-1在定义域D上是奇函数,(其中a>0且a≠1).(1)求出m的值,并求出定义域D;(2)判断f(x)在(1,+∞)上的单调】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=
10-x
10+x
x∈A,试判断g(x)的单调性;(不证)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
(文科)已知f(x)是定义在R上的奇函数,又是周期为2的周期函数,当x∈[0,1)时,f(x)=2x-1,则f(3,5)的值为 .
题型:填空题难度:简单| 查看答案
判断函数f(x)=x-
1
x
 的奇偶性,单调性,并利用定义证明.
题型:解答题难度:一般| 查看答案
设函数f(x)=x+
a
x+1
,  x∈[0,+∞)

(1)当a=2时,求函数f(x)的最小值;
(2)当0<a<1时,试判断函数f(x)的单调性,并证明.
题型:解答题难度:一般| 查看答案
已知函数f(x)=
bx+c
ax2+1
(a,c∈R,a>0,b
是自然数)是奇函数,f(x)有最大值
1
2
,且f(1)>
2
5
,试求函数f(x)的解析式.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.