当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知函数f(x)=2x+1x+2,试证明f(x)在区间(-2,+∞)上是增函数,并求出该函数在区间[1,4]上的最大值和最小值....
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=
2x+1
x+2
,试证明f(x)在区间(-2,+∞)上是增函数,并求出该函数在区间[1,4]上的最大值和最小值.
答案
f(x)=
2x+1
x+2
=2-
3
x+2
                  (1分)
在(-2,+∞)上任取x1,x2,使得-2<x1<x2,则                    (2分)
f(x1)-f(x2)=
3(x1-x2)
(x1+2)(x2+2)
                           (5分)
∵-2<x1<x2
∴0<x1+2<x2+2,且x1-x2<0                                        (8分)
∴f(x1)-f(x2)<0,即f(x1)<f(x2),(9分)
∴f(x)在区间(-2,+∞)上是增函数.(10分)
∵f(x)在区间(-2,+∞)上是增函数,
∴f(x)在区间[1,4]上也是增函数,(11分)
当x=1时,f(x)有最小值,且最小值为f(1)=1                        (12分)
当x=4时,f(x)有最大值,且最大值为f(4)=
3
2
.(14分)
核心考点
试题【已知函数f(x)=2x+1x+2,试证明f(x)在区间(-2,+∞)上是增函数,并求出该函数在区间[1,4]上的最大值和最小值.】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
设函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0 时,0<f(x)<1.
(Ⅰ)若f(1)=
1
2
,求
f(1)+f(2)
f(1)
的值;
(Ⅱ)求证:f(0)=1,且当x<0时,有f(x)>1;
(Ⅲ)判断f(x)在R上的单调性,并加以证明.
题型:解答题难度:一般| 查看答案
下列函数中,在区间(0,+∞)上是增函数的是(  )
A.y=|x|B.y=3-xC.y=
1
x
D.y=-x2+4
题型:单选题难度:一般| 查看答案
已知函数f(x)=
3x-1
3x+1

(1)证明f(x)为奇函数;
(2)判断f(x)的单调性,并用定义加以证明.
题型:解答题难度:一般| 查看答案
已知a,b∈R且a≠2,定义在区间(-b,b)内的函数f(x)=lg
1+ax
1+2x
是奇函数.
(1)求函数f(x)的解析式及b的取值范围;
(2)讨论f(x)的单调性.
题型:解答题难度:一般| 查看答案
设f(x)是定义在R上的函数,对任意实数m、n,都有f(m)•f(n)=f(m+n),且当x<0时,f(x)>1.
(1)证明:①f(0)=1;②当x>0时,0<f(x)<1;③f(x)是R上的减函数;
(2)设a∈R,试解关于x的不等式f(x2-3ax+1)•f(-3x+6a+1)≥1.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.