二次函数f(x)=x2-2x+3的值域是( )A.(-∞,2) | B.[2,+∞) | C.(1,2) | D.(1,2] |
|
对函数式进行配方得到:y=x2-2x+3=(x-1)2+2, ∵函数的定义域是R,于是可得函数的最小值为2,从而函数的值域为:[2,+∞). 故选B. |
核心考点
试题【二次函数f(x)=x2-2x+3的值域是( )A.(-∞,2)B.[2,+∞)C.(1,2)D.(1,2]】;主要考察你对
函数定义域等知识点的理解。
[详细]
举一反三
探究函数f(x)=x+ x∈(0,+∞)的最小值,并确定相应的x的值,列表如下,请观察表中y值随x值变化的特点,完成下列问题:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … | 函数y=的定义域为M,函数f(x)=4x+a•2x+1+2(x∈M). (1)当a=1时,求函数f(x)的值域; (2)求函数f(x)的最小值. |
|