当前位置:初中试题 > 数学试题 > 圆的认识 > 在坐标平面内,半径为R的⊙C与x轴交于点D(1,0)、E(5,0),与y轴的正半轴相切于点A。点A、B关于x轴对称,点P(a,0)在x的正半轴上运动,作直线BP...
题目
题型:不详难度:来源:
在坐标平面内,半径为R的⊙C与x轴交于点D(1,0)、E(5,0),与y轴的正半轴相切于点A。点A、B关于x轴对称,点P(a,0)在x的正半轴上运动,作直线BP,作EH⊥BP于H。

⑴求圆心C的坐标及半径R的值;
⑵△POB和△PHE随点P的运动而变化,若它们全等,求a的值;
⑶当a=6时,试确定直线BP与⊙C的位置关系并说明理由。
答案
(1)C(3,),R=3;(2)a=2;(3)相离.
解析

试题分析:(1)由题意知圆心C点的横坐标为DE中点的坐标,纵坐标和B点纵坐标相等,用切割线定理求出OB的长即可,C点的横坐标等于半径;
(2)因为△POA≌△PHE,OE的长为直角边和斜边的和,而OE的长已求,用OP表示PE,并且OA=OB.根据勾股定理求出OP的长即为a的值,过A作圆的切线为标准证明AP与⊙C的关系.
试题解析:(1)连接BC,则BC⊥y轴.取DE中点M,连CM,则CM⊥x轴.

∵OD=1,OE=5,
∴OM=3.
∵OB2=OD•OE=5,
∴OB=
∴圆心C(3,),半径R=3.
(2)∵△POA≌△PHE,
∴PA=PE.
∵OA=OB=,OE=5,OP=a,
∴PA2=a2+5,PE2=(5-a)2
∴a2+5=(a-5)2
解得:a=2.
(3)过点A作⊙C的切线AT(T为切点),交x轴正半轴于Q.

设Q(m,0),则QE=m-5,QD=m-1,
QT=QA-AT=QA-AB=
由QT2=QE•QD,得()2=(m-5)(m-1),

11m2-60m=0.
∵m>0,
∴m=
∵a=6,点P(6,0),在点Q(,0)的右侧,
∴直线AP与⊙C相离.
考点: 1.直线与圆的位置关系;2.直角三角形全等的判定;3.切割线定理.
核心考点
试题【在坐标平面内,半径为R的⊙C与x轴交于点D(1,0)、E(5,0),与y轴的正半轴相切于点A。点A、B关于x轴对称,点P(a,0)在x的正半轴上运动,作直线BP】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。你能和小菲一起解决下列各问题吗?(以下各问只要求写出必要的计算过程和简洁的文字说明即可。)
(1)如图①,小菲同学把一个边长为1的正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片向右翻转一周回到初始位置,求顶点O所经过的路程;并求顶点O所经过的路线;

图①
(2)小菲进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片向右翻转若干次.她提出了如下问题:

图②
问题①:若正方形纸片OABC接上述方法翻转一周回到初始位置,求顶点O经过的路程;
问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是
(3)①小菲又进行了进一步的拓展研究,若把这个正三角形的一边OA与这个正方形的一边OA重合(如图3),然后让这个正三角形在正方形上翻转,直到正三角形第一次回到初始位置(即OAB的相对位置和初始时一样),求顶点O所经过的总路程。

图③
②若把边长为1的正方形OABC放在边长为1的正五边形OABCD上翻转(如图④),直到正方形第一次回到初始位置,求顶点O所经过的总路程。

图④
(4)规律总结,边长相等的两个正多边形,其中一个在另一个上翻转,当翻转后第一次回到初始位置时,该正多边形翻转的次数一定是两正多边形边数的___________。
题型:不详难度:| 查看答案
如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB(  )
A.是正方形B.是长方形C.是菱形D.以上答案都不对

题型:不详难度:| 查看答案
如图,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm,以边AC所在的直线为轴旋转一周得到一个圆锥,则这个圆锥的面积是 _________ cm2

题型:不详难度:| 查看答案
在直径为52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm,那么油面宽度AB是 _________ cm.

题型:不详难度:| 查看答案
如图,AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.求证:CD是⊙O的切线.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.