当前位置:初中试题 > 数学试题 > 平行四边形性质 > 已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上...
题目
题型:不详难度:来源:
已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与BC重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF

(1)如图1,当点D在边BC上时,
①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?若不成立,请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
(3)如图3,当点D在边CB的延长线上时,且点AF分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
答案
(1)可通过证明△ABD≌△ACF.∴∠ADB=∠AFC
(2)结论∠AFC=∠ACB+∠DAC不成立.∠AFC、∠ACB、∠DAC之间的等量关系是:
AFC=∠ACBDAC(3),1,
解析

试题分析:(1)①证明:∵△ABC为等边三角形,

AB=AC,∠BAC=60°.
∵∠DAF=60°,∴∠BAC=∠DAF.∴∠BAD=∠CAF
∵四边形ADEF是菱形,∴AD=AF
∴△ABD≌△ACF.∴∠ADB=∠AFC.  
②结论:∠AFC=∠ACB+∠DAC成立.   
(2)结论∠AFC=∠ACB+∠DAC不成立.
AFC、∠ACB、∠DAC之间的等量关系是:
AFC=∠ACBDAC(或这个等式的正确变式).
证明:∵△ABC为等边三角形,
AB=AC,∠BAC= 60°.
∵∠DAF = 60°,∴∠BAC=∠DAF,∴∠BAD=∠CAF
∵四边形ADEF是菱形,∴AD=AF
∴△ABD≌△ACF,∴∠ADC=∠AFC
又∵∠ACB=∠ADC+∠DAC
∴∠AFC=∠ACB-∠DAC.       
(3)补全图形如下图:

AFC、∠ACB、∠DAC之间的等量关系是:∠AFC=2∠ACB-∠DAC(或∠AFC+∠DAC+∠ACB=180°以及这两个等式的正确变式).
点评:本题难度较低,主要考查学生对:全等三角形性质和判定及四边形性质知识点的掌握,为中考常考题型,要求学生牢固掌握解题技巧。
核心考点
试题【已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上】;主要考察你对平行四边形性质等知识点的理解。[详细]
举一反三
已知,矩形ABCD中,延长BC至E,使BE = BD,F为DE的中点,连结AF、CF.

(1)若AB = 3,AD = 4,求CF的长;
(2)求证:∠ADB = 2∠DAF.
题型:不详难度:| 查看答案
已知:如图,矩形ABCD,AB = 4,∠ACB = 30°.点E从点C出发,沿折线CA—AD以每秒一个单位长度的速度运动,过点E作EF∥CD交BC于点F,同时过点E作EG⊥AC交直线BC于点G,设运动的时间为t,△EFG与△ABC重叠部分的面积为S,当点E运动到点D时停止运动.

(1)当点B与点G重合时,求此时t的值;
(2)直接写出S与t之间的函数关系式和相应的自变量取值范围;
(3)当t = 4时,将△EFG绕点E顺时针旋转一个角度),∠GEF的两边分别交矩形的边于点M,点N.当△MEN为等腰三角形时,求此时△MEN的面积.
题型:不详难度:| 查看答案
如图,ABCD中,中点,过点的垂线交于点,交的延长线于点,连接.若,求的长及ABCD的周长.
题型:不详难度:| 查看答案
如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_______.
题型:不详难度:| 查看答案
如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是          
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.