当前位置:初中试题 > 数学试题 > 平行四边形性质 > 在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CEBD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②B0=BF;③CA=CH;④BE...
题目
题型:不详难度:来源:
在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CEBD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②B0=BF;③CA=CH;④BE=3ED;正确的个数为(  )
A.1个B.2个 C.3个D.4个

答案
C
解析

试题分析:根据矩形的性质可得OA=OB=OC=OD,由AD=,AB=1根据特殊角的锐角三角函数值可求出∠ADB=30°,即得∠ABO=60°,从而可证得△ABO是等边三角形,即得AB=BO=AO=OD=OC=DC,推出BF=AB,求出∠H=∠CAH=15°,求出DE=EO,再依次分析各小题即可作出判断.
根据已知条件不能推出AF=FH,故①错误;
解:∵四边形ABCD是矩形,
∴∠BAD=90°,
∵AD=,AB=1,
∴tan∠ADB=
∴∠ADB=30°,
∴∠ABO=60°,
∵四边形ABCD是矩形,
∴AD∥BC,AC=BD,AC=2AO,BD=2BO,
∴AO=BO,
∴△ABO是等边三角形,
∴AB=BO,∠AOB=∠BAO=60°=∠COE,
∵AF平分∠BAD,
∴∠BAF=∠DAF=45°,
∵AD∥BC,
∴∠DAF=∠AFB,
∴∠BAF=∠AFB,
∴AB=BF,
∵AB=BO,
∴BF=BO,故②正确;
∵∠BAO=60°,∠BAF=45°,
∴∠CAH=15°,
∵CE⊥BD,
∴∠CEO=90°,
∵∠EOC=60°,
∴∠ECO=30°,
∴∠H=∠ECO-∠CAH=30°-15°=15°=∠CAH,
∴AC=CH,故③正确;
∵△AOB是等边三角形,
∴AO=OB=AB,
∵四边形ABCD是矩形,
∴OA=OC,OB=OD,AB=CD,
∴DC=OC=OD,
∵CE⊥BD,
∴DE=EO=DO=BD,
∴BE=3ED,故④正确;
∴正确的有3个,
故选C.
点评:本题知识点较多,综合性强,是中考常见题,一般是中考压轴题,难度较大,需特别注意.
核心考点
试题【在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CEBD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②B0=BF;③CA=CH;④BE】;主要考察你对平行四边形性质等知识点的理解。[详细]
举一反三
如图,正方形ABCD的对角线AC是菱形AEFC的一边,则∠FAB等于 _________ .
题型:不详难度:| 查看答案
如图,梯形ABCD中,AD∥BC,∠C=90°,且AB=AD,连接BD,过点A作BD的垂线,交BC于E,若EC=3cm,CD=4cm,则梯形ABCD的面积是_________cm².
题型:不详难度:| 查看答案
菱形ABCD中,∠A=60°,AB=6,点P是菱形内一点,PB=PD=,则AP的长为_____.
题型:不详难度:| 查看答案
如图,正方形ABCD的面积为l2,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,PD+PE的和最小,则这个最小值为_______.
 
题型:不详难度:| 查看答案
已知如图,矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE于F.求证:DF=DC.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.