当前位置:初中试题 > 数学试题 > 平行四边形性质 > 如图所示,在正方形ABCD中,点G是边BC上任意一点,DE⊥AG,垂足为E,延长DE交AB于点F.在线段AG上取点H,使得AG=DE+HG,连接BH.求证:∠A...
题目
题型:不详难度:来源:
如图所示,在正方形ABCD中,点G是边BC上任意一点,DE⊥AG,垂足为E,延长DE交AB于点F.在线段AG上取点H,使得AG=DE+HG,连接BH.求证:∠ABH=∠CDE.

答案
证明见解析
解析

试题分析:根据正方形的性质可得AB=AD,∠ABG=∠DAF=90°,再根据同角的余角相等求出∠1=∠2,然后利用“角边角”证明△ABG和△DAF全等,根据全等三角形对应边相等可AF=BG,AG=DF,全等三角形对应角相等可得∠AFD=∠BGA,然后求出EF=HG,再利用“边角边”证明△AEF和△BHG全等,根据全等三角形对应角相等可得∠1=∠3,从而得到∠2=∠3,最后根据等角的余角相等证明即可。 
证明:在正方形ABCD中,AB=AD,∠ABG=∠DAF=90°,

∵DE⊥AG,∴∠2+∠EAD=90°。
又∵∠1+∠EAD=90°,∴∠1=∠2。
在△ABG和△DAF中,
∵∠1=∠2,AB=AD,∠ABG=∠DAF=90°,
∴△ABG≌△DAF(ASA)。
∴AF=BG,AG=DF,∠AFD=∠BGA。
∵AG=DE+HG,AG=DE+EF,∴EF=HG。
在△AEF和△BHG中,∵AF=BG,∠AFD=∠BGA,EF=HG,
∴△AEF≌△BHG(SAS),∴∠1=∠3。∴∠2=∠3。
∵∠2+∠CDE=∠ADC=90°,∠3+∠ABH=∠ABC=90°,∴∠ABH=∠CDE。
核心考点
试题【如图所示,在正方形ABCD中,点G是边BC上任意一点,DE⊥AG,垂足为E,延长DE交AB于点F.在线段AG上取点H,使得AG=DE+HG,连接BH.求证:∠A】;主要考察你对平行四边形性质等知识点的理解。[详细]
举一反三
如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是

A.SABCD=4SAOB
B.AC=BD
C.AC⊥BD
D.ABCD是轴对称图形
题型:不详难度:| 查看答案
如图,四边形ABCD是等腰梯形,下底AB在x轴上,点D在y轴上,直线AC与y轴交于点E(0,1),点C的坐标为(2,3).
(1)求A、D两点的坐标;
(2)求经过A、D、C三点的抛物线的函数关系式;
(3)在y轴上是否在点P,使△ACP是等腰三角形?若存在,请求出满足条件的所有点P的坐标;若不存在,请说明理由.

题型:不详难度:| 查看答案
定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.
性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.
理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且SACD=SBCD
应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.
(1)求证:△AOB和△AOE是“友好三角形”;
(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.
探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.

题型:不详难度:| 查看答案
如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.
求证:OE=BC.

题型:不详难度:| 查看答案
在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.