当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点B,A,且△AOB∽△BOC。(1)求C点的坐标、∠ABC的度数; (2)求二次...
题目
题型:内蒙古自治区中考真题难度:来源:
如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点B,A,且△AOB∽△BOC。
(1)求C点的坐标、∠ABC的度数;
(2)求二次函数y=ax2+bx+3的解析式;
(3)在线段AC上是否存在M(m,0)点,使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由。
答案
解:(1)由题意得:B(0,3)
∵△AOB∽△BOC


∴OC=4
C(4,0)


;(2)∵的图像经过点

;(3)①当PC=PO时,点P为BC的中点,得PC=2.5,
过点P作,PM1交AC于点M1
则点P在BM1为直径的圆上,
由△CPM1∽△CBA,



②当CP=CO时,过P作
则点P在以为直径的圆上,
同理
∽△CBA
得CM2=5,
∴m2=-1
③当OC=OP时,M点不在线段AC上,
综上所述,m的值为或-1。
核心考点
试题【如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点B,A,且△AOB∽△BOC。(1)求C点的坐标、∠ABC的度数; (2)求二次】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
某商场将进货价位30元的书包以40元售出,平均每月能售出600个,调查表明:这种书包的售价每个上涨1元,其销售量就减少10个。
(1)请写出每月售出书包的利润y(元)与每个书包涨价x(元)间的函数关系式;
(2)设某月的利润为10000元,此利润是否为该月的最大利润,请说明理由;
(3)请分析并回答售价在什么范围内商家获得的月利润不低于6000元。
题型:模拟题难度:| 查看答案
直线y=3x-3与x轴交于点A,与y轴交于点B,抛物线y=ax2+2ax+b经过A、B两点。
(1)求这个二次函数的解析式;
(2)将点B向右平移5个单位,再向上平移5个单位得到点C,问抛物线上是否存在点D、E,使以AC为边的四边形为平行四边形,若存在,求出D、E的坐标,若不存在,说明理由;
(3)若N(-2,m)为抛物线上一点,P为抛物线上、直线AN下方一动点,当点P运动到什么位置时,△ANP的面积最大?求出此时P点的坐标和△ANP的最大面积。
题型:模拟题难度:| 查看答案
如图,已知抛物线经过原点O,与x轴交于另一点A,它的对称轴x=2与x轴交于点C,直线y=2x+1经过抛物线上一点B(m,-3),且与y轴、直线x=2分别交于点D,E。
(1)求抛物线对应的函数解析式并用配方法把这个解析式化成y=a(x-h)2+k的形式;
(2)求证:CD⊥BE;
(3)在对称轴x=2上是否存在点P,使△PBE是直角三角形,如果存在,请求出点P的坐标,并求出△PAB的面积;如果不存在,请说明理由。
题型:四川省中考真题难度:| 查看答案
已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D,若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线。
(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式;
(2)如图2,若抛物线y=a(x-m)2+n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式;
(3)如图3,若抛物线y=a(x-m)2+n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形。
①用含b的代数式表示m、n的值;
②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示),若不存在,请说明理由。
题型:浙江省中考真题难度:| 查看答案
已知两直线l1,l2分别经过点A(1,0),点B(-3,0),并且当两直线同时相交于y正半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l2交于点K,如图所示。
(1)求点C的坐标,并求出抛物线的函数解析式;
(2)抛物线的对称轴被直线l1,抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由。
(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标。
题型:浙江省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.