当前位置:初中试题 > 数学试题 > 二次函数的应用 > 某商场将进货价位30元的书包以40元售出,平均每月能售出600个,调查表明:这种书包的售价每个上涨1元,其销售量就减少10个。(1)请写出每月售出书包的利润y(...
题目
题型:模拟题难度:来源:
某商场将进货价位30元的书包以40元售出,平均每月能售出600个,调查表明:这种书包的售价每个上涨1元,其销售量就减少10个。
(1)请写出每月售出书包的利润y(元)与每个书包涨价x(元)间的函数关系式;
(2)设某月的利润为10000元,此利润是否为该月的最大利润,请说明理由;
(3)请分析并回答售价在什么范围内商家获得的月利润不低于6000元。
答案
解:(1)y=(10+x)(600-10x)=6000-100x+600x-10x2=-10x2+500x+6000;
(2)当x==25时,有ymax=12250>10000,∴不是;
(3)令y=6000=-10x2+500x+6000,
∴x(-10x+500)=0,x1=0,x2=50,
∴40≤售价≤90。
核心考点
试题【某商场将进货价位30元的书包以40元售出,平均每月能售出600个,调查表明:这种书包的售价每个上涨1元,其销售量就减少10个。(1)请写出每月售出书包的利润y(】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
直线y=3x-3与x轴交于点A,与y轴交于点B,抛物线y=ax2+2ax+b经过A、B两点。
(1)求这个二次函数的解析式;
(2)将点B向右平移5个单位,再向上平移5个单位得到点C,问抛物线上是否存在点D、E,使以AC为边的四边形为平行四边形,若存在,求出D、E的坐标,若不存在,说明理由;
(3)若N(-2,m)为抛物线上一点,P为抛物线上、直线AN下方一动点,当点P运动到什么位置时,△ANP的面积最大?求出此时P点的坐标和△ANP的最大面积。
题型:模拟题难度:| 查看答案
如图,已知抛物线经过原点O,与x轴交于另一点A,它的对称轴x=2与x轴交于点C,直线y=2x+1经过抛物线上一点B(m,-3),且与y轴、直线x=2分别交于点D,E。
(1)求抛物线对应的函数解析式并用配方法把这个解析式化成y=a(x-h)2+k的形式;
(2)求证:CD⊥BE;
(3)在对称轴x=2上是否存在点P,使△PBE是直角三角形,如果存在,请求出点P的坐标,并求出△PAB的面积;如果不存在,请说明理由。
题型:四川省中考真题难度:| 查看答案
已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D,若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线。
(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式;
(2)如图2,若抛物线y=a(x-m)2+n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式;
(3)如图3,若抛物线y=a(x-m)2+n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形。
①用含b的代数式表示m、n的值;
②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示),若不存在,请说明理由。
题型:浙江省中考真题难度:| 查看答案
已知两直线l1,l2分别经过点A(1,0),点B(-3,0),并且当两直线同时相交于y正半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l2交于点K,如图所示。
(1)求点C的坐标,并求出抛物线的函数解析式;
(2)抛物线的对称轴被直线l1,抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由。
(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标。
题型:浙江省中考真题难度:| 查看答案
在平面直角坐标系中,如图1,将个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C。 
(1)当n=1时,如果=-1,试求b的值;
(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;
(3)将矩形OABC绕点O顺时针旋转,使得点B落到轴的正半轴上,如果该抛物线同时经过原点O。
①试求当n=3时a的值;
②直接写出a关于n的关系式。
题型:浙江省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.