当前位置:初中试题 > 数学试题 > 二次函数的应用 > 某文具零售店准备从批发市场选购A、B两种文具,批发价A种为12元/件,B种为8元/件。若该店零售A、B两种文具的日销售量y(件)与零售价x(元/件)均成一次函数...
题目
题型:福建省期末题难度:来源:
某文具零售店准备从批发市场选购A、B两种文具,批发价A种为12元/件,B种为8元/件。若该店零售A、B两种文具的日销售量y(件)与零售价x(元/件)均成一次函数关系。(如图)
(1)求y与x的函数关系式;
(2)该店计划这次选购A、B两种文具的数量共100件,所花资金不超过1000元,并希望全部售完获利不低于296元,若按A种文具日销售量4件和B种文具每件可获利2元计算,则该店这次有哪几种进货方案?
(3)若A种文具的零售价比B种文具的零售价高2元/件,求两种文具每天的销售利润W(元)与A种文具零售价x(元/件)之间的函数关系式,并说明A、B两种文具零售价分别为多少时,每天销售的利润最大?
答案
解:(1)由图象知:当x=10时,y=10;
当x=15时,y=5,
设y=kx+b,
根据题意得:
解得
∴y=-x+20;
(2)当y=4时,得x=16,即A零售价为16元.设这次批发A种文具a件,则B文具是(100-a)件,
由题意,得
解得48≤a≤50。 
∴有三种进货方案,分别是①进A种48件,B种52件;②进A种49件,B种51件;③进A种50件,B种50件。
(3)w=(x-12)(-x+20)+(x-10)(-x+22),整理,得w=-2x2+64x-460。
当x=-=16,w有最大值,
即,每天销售的利润最大。
核心考点
试题【某文具零售店准备从批发市场选购A、B两种文具,批发价A种为12元/件,B种为8元/件。若该店零售A、B两种文具的日销售量y(件)与零售价x(元/件)均成一次函数】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系xOy 中,一次函数 (为常数)的图象与x轴交于点A(,0),与y轴交于点C.以直线x=1为对称轴的抛物线  ( 为常数,且≠0)经过A,C两点,并与x轴的正半轴交于点B.  
(1)求的值及抛物线的函数表达式;  
(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;  
(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于两点,试探究 是否为定值,并写出探究过程.
题型:四川省中考真题难度:| 查看答案
如图,在平面直角坐标系xOy 中,一次函数 (为常数)的图象与x轴交于点A(,0),与y轴交于点C.以直线x=1为对称轴的抛物线  ( 为常数,且≠0)经过A,C两点,并与x轴的正半轴交于点B.  
(1)求的值及抛物线的函数表达式;  
(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;  
(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于两点,试探究 是否为定值,并写出探究过程.
题型:四川省中考真题难度:| 查看答案
如图,在□OABC 中,点A 在x 轴上,∠AOC=60°,0C=4cm,OA=8cm,动点P从点O出发,以1cm /s 的速度沿线段OA→AB 运动;动点Q同时从点O出发,以acm /s 的速度沿线段OC →CB 运动,其中一点先到达终点B 时,另一点也随之停止运动,设运动时间为t 秒。
(1) 填空:点C 的坐标是(______ ,______) ,对角线OB 的长度是_______cm ;
(2) 当a=1 时,设△OPQ 的面积为S ,求S 与t 的函数关系式,并直接写出当t 为何值时,S 的值最大?        
(3) 当点P 在OA 边上,点Q 在CB 边上时,线段PQ 与对角线OB 交于点M. 若以O 、M 、P为顶点的三角形与△OAB 相似,求a 与t 的函数关系式,并直接写出t 的取值范围.
题型:福建省中考真题难度:| 查看答案
如图,在直角坐标系中,O为坐标原点,平行四边形OABC的边OA在x轴上,∠B=60°,OA=6,OC=4,D是BC的中点,延长AD交OC的延长线于点E。
(1)画出△ECD关于边CD所在直线为对称轴的对称图形△E1CD,并求出点E1的坐标;
(2)求经过C、E1、B三点的抛物线的函数表达式;
(3)请探求经过C、E1、B三点的抛物线上是否存在点P,使以点P、B、C为顶点的三角形与△ECD相似?若存在这样的点P,请求出点P的坐标;若不存在这样的点P,请说明理由。
题型:期末题难度:| 查看答案
已知函数y=x2+bx﹣1的图象经过点(3,2)
(1)求这个函数的解析式;
(2)画出它的图象,并指出图象的顶点坐标;
(3)当x>0时,求使y≥2的x的取值范围.
题型:期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.