当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,已知y=x2-ax+a+2与x轴交于A,B两点,与y轴交于点D(0,8),直线CD平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从点C出发...
题目
题型:不详难度:来源:
如图,已知y=x2-ax+a+2与x轴交于A,B两点,与y轴交于点D(0,8),直线CD平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从点C出发,沿C⇒D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A⇒B运动,连接PQ,CB,设点P的运动时间t秒.(0<t<2).
(1)求a的值;
(2)当t为何值时,PQ平行于y轴;
(3)当四边形PQBC的面积等于14时,求t的值.
答案
(1)把(0,8)代入函数式可得,a+2=8,
解得:a=6.
函数解析式是:y=x2-6x+8;

(2)根据二次函数的对称性,可令y=8,
即x2-6x+8=8,
解得,x1=0,x2=6,
则C点的坐标是(6,8);
令y=0,即x2-6x+8=0,
解得,x1=2,x2=4,
那么A的坐标是(2,0).B点的坐标是(4,0),
根据题意,得OQ=DP,即OA+AQ=CD-CP,
因此2+t=6-2t,
解得,t=
4
3


(3)∵S四边形PQBC=S△PQB+S△PCB
∴S四边形PQBC=
1
2
×(2-t)×8+
1
2
×2t×8=8+4t.
根据题意得,8+4t=14,
解得,t=
3
2
核心考点
试题【如图,已知y=x2-ax+a+2与x轴交于A,B两点,与y轴交于点D(0,8),直线CD平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从点C出发】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
二次函数图象过A、B、C三点,点A(-l,0),B(3,0),点C在y轴负半轴上,且OB=OC.
(1)求这个二次函数的解析式:
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象过点(1,5),并求出平移后图象与y轴的交点坐标.
题型:不详难度:| 查看答案
如图,⊙M的圆心在x轴上,与坐标轴交于A(0,


3
)、B(-1,0),抛物线y=-


3
3
x2+bx+c
经过A、B两点.
(1)求抛物线的函数解析式;
(2)设抛物线的顶点为P.试判断点P与⊙M的位置关系,并说明理由;
(3)若⊙M与y轴的另一交点为D,则由线段PA、线段PD及弧ABD围成的封闭图形PABD的面积是多少?
题型:不详难度:| 查看答案
如图(1),已知抛物线y=ax2+b与x轴交于A、B两点(A在B的左边),与y轴交于点M,点B的坐标为(4,0),点M的坐标为(0,-4).
(1)求抛物线的解析式;
(2)点N的坐标为(O,-3),作DN⊥y轴于点N,交抛物线于点D;直线y=-5垂直y轴于点C(0,-5);作DF垂直直线y=-5于点F,作BE垂直直线y=-5于点E.
①求线段的长度:MC=______,MN=______;BE=______,BN=______;DF=______,DN=______;
②若P是这条抛物线上任意一点,猜想:该点到直线y=-5的距离PH与该点到N点的距离PN有怎样的数量关系?
(3)如图(2),将N点改为抛物线y=x2-4x+3对称轴上的一点,直线y=-5改为直线y=m(m<-1),已知对于抛物线y=x2-4x+3上的每一点,都有该点到直线y=m的距离等于该点到点N的距离,求m的值及点N的坐标.
题型:不详难度:| 查看答案
下表给出了代数式x2+bx+c与x的一些对应值:
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
x01234
x2+bx+c3-13
如图,在平面直角坐标系中有一直角梯形OABC,∠AOC=90°,ABOC,OC在x轴上,过A、B、C三点的抛物线表达式为y=-
1
18
x2+
4
9
x+10

(1)求A、B、C三点的坐标;
(2)如果在梯形OABC内有一矩形MNPO,使M在y轴上,N在BC边上,P在OC边上,当MN为多少时,矩形MNPO的面积最大?最大面积是多少?
(3)若用一条直线将梯形OABC分为面积相等的两部分,试说明你的分法.