当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,已知抛物线y=ax2+bx+c与x轴交于A(1,0),B(3,0)两点,且过点(-1,16),抛物线的顶点是点C,对称轴与x轴的交点为点D,原点为点O.在...
题目
题型:不详难度:来源:
如图,已知抛物线y=ax2+bx+c与x轴交于A(1,0),B(3,0)两点,且过点(-1,16),抛物线的顶点是点C,对称轴与x轴的交点为点D,原点为点O.在y轴的正半轴上有一动点N,使以A、O、N这三点为顶点的三角形与以C、A、D这三点为顶点的三角形相似.求:
(1)这条抛物线的解析式;
(2)点N的坐标.
答案
(1)∵抛物线y=ax2+bx+c经过点A(1,0),B(3,0),(-1,16),





a+b+c=0
9a+3b+c=0
a-b+c=16

解得





a=2
b=-8
c=6

∴抛物线的解析式为y=2x2-8x+6;

(2)∵y=2x2-8x+6=2(x-2)2-2,
∴顶点C的坐标为(2,-2),
点D的坐标为(2,0),
∴CD=2,
∵A(1,0),
∴AD=2-1=1,
①ON和DC是对应边时,△AON△ADC,
ON
DC
=
AO
AD

ON
2
=
1
1

解得ON=2,
∴点N(0,2);
②ON和DA是对应边时,△AON△CDA,
ON
DA
=
AO
CD

ON
1
=
1
2

解得ON=
1
2

∴点N(0,
1
2
),
综上所述,点N的坐标为(0,2)或(0,
1
2
).
核心考点
试题【如图,已知抛物线y=ax2+bx+c与x轴交于A(1,0),B(3,0)两点,且过点(-1,16),抛物线的顶点是点C,对称轴与x轴的交点为点D,原点为点O.在】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知:如图所示,一次函数有y=-2x+3的图象与x轴、y轴分别交于A、C两点,二次函数y=x2+bx+c的图象过点C,且与一次函数在第二象限交于另一点B,若AC:CB=1:2,那么这二次函数的顶点坐标为______.
题型:不详难度:| 查看答案
已知:抛物线C1:y=-2x2+bx-6与抛物线C2关于原点对称,抛物线C1与x轴分别交于A(1,0),B(m,0),顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N.
(1)求m的值;
(2)求抛物线C2的解析式;
(3)若抛物线C1与抛物线C2同时以每秒1个单位的速度沿x轴方向分别向左、向右运动,此时记A,B,C,D,M,N在某一时刻的新位置分别为A′,B′,C′,D′,M′,N′,当点A′与点D′重合时运动停止.在运动过程中,四边形B′M′C′N′能否形成矩形?若能,求出此时运动时间t(秒)的值,若不能,说明理由.
题型:不详难度:| 查看答案
如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,
(1)求证:△ACE△CBE;
(2)若AB=8,设OE=x(0<x<4),CE2=y,请求出y关于x的函数解析式;
(3)探究:当x为何值时,tan∠D=


3
3

题型:不详难度:| 查看答案
如图,抛物线y=ax2+bx-3a经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)已知点D(m,-m-1)在第四象限的抛物线上,求点D关于直线BC对称的点D"的坐标.
(3)在(2)的条件下,连接BD,问在x轴上是否存在点P,使∠PCB=∠CBD?若存在,请求出P点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
抛物线y=ax2+c(a≠0)与直线y=kx+b(k≠0)相交于A(2,1)、B(1,-1)两点,你能求出抛物线和直线的函数表达式吗?画出草图.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.