当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,在平面直角坐标系xOy中,二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为B.(1)求这个二次函数的解析式;(2)若点C的坐标为(4,0),...
题目
题型:不详难度:来源:
如图,在平面直角坐标系xOy中,二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为B.
(1)求这个二次函数的解析式;
(2)若点C的坐标为(4,0),连接BC,过点A作AE⊥BC,垂足为点E.当点D在直线AE上,且满足DE=1时,求点D的坐标.
答案
(1)∵二次函数y=-x2+bx+3的图象经过点A(-1,0),
∴0=-1-b+3,得b=2,(1分)
∴二次函数的解析式为y=-x2+2x+3;(2分)

(2)由(1)得这个二次函数图象顶点B的坐标为(1,4);(3分)
如图所示,过点B作BF⊥x轴,垂足为点F;
在Rt△BCF中,BF=4,CF=OC-OF=3,由勾股定理,得BC=5,
sin∠BCF=
4
5

∵AE⊥BC,垂足为点E,
∴∠AEC=90°;
在Rt△ACE中,sin∠ACE=
AE
AC

又AC=5,
可得
AE
5
=
4
5

∴AE=4,由勾股定理得CE=3;
过点D作DH⊥x轴,垂足为点H;
由题意知,点H在y轴的右侧,易证△ADH△ACE;
设点D的坐标为(x,y),则AH=x+1,DH=y,(4分)
①若点D在AE的延长线上,则AD=5;
x+1
4
=
y
3
=
5
5

∴x=3,y=3,
所以点D的坐标为(3,3);(6分)
②若点D在线段AE上,则AD=3;
x+1
4
=
y
3
=
3
5

x=
7
5
y=
9
5

所以点D的坐标为(
7
5
9
5
);
综上所述,点D的坐标为(3,3)或(
7
5
9
5
).
核心考点
试题【如图,在平面直角坐标系xOy中,二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为B.(1)求这个二次函数的解析式;(2)若点C的坐标为(4,0),】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出y>0时,x的取值范围______;
(2)写出y随x的增大而减小的自变量x的取值范围______;
(3)求函数y=ax2+bx+c的表达式.
题型:不详难度:| 查看答案
设抛物线y=ax2+bx+c与X轴交于两不同的点A(-1,0),B(m,0),(点A在点B的左边),与y轴的交点为点C(0,-2),且∠ACB=90°.
(1)求m的值和该抛物线的解析式;
(2)若点D为该抛物线上的一点,且横坐标为1,点E为过A点的直线y=x+1与该抛物线的另一交点.在X轴上是否存在点P,使得以P、B、D为顶点的三角形与△AEB相似?若存在,求出点P的坐标;若不存在,请说明理由.
(3)连接AC、BC,矩形FGHQ的一边FG在线段AB上,顶点H、Q分别在线段AC、BC上,若设F点坐标为(t,0),矩形FGHQ的面积为S,当S取最大值时,连接FH并延长至点M,使HM=k•FH,若点M不在该抛物线上,求k的取值范围.
题型:不详难度:| 查看答案
如图,已知抛物线y=ax2+bx经过圆点O和x轴上的另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x-1与抛物线y=a2+bx交于点B(-2,m),且y轴、直线x=2分别交于点D、E.
(1)求m的值及该抛物线对应的函数解析式;
(2)试判断△ECB的形状,并说明理由.
题型:不详难度:| 查看答案
已知二次函数y=mx2+(m-3)x-3(m>0)的图象如图所示.
(1)这条抛物线与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且AB=4,⊙M过A、B、C三点,求扇形MAC的面积;
(2)在(1)的条件下,抛物线上是否存在点P,使△PBD(PD垂直于x轴,垂足为D)被直线BC分成面积比为1:2的两部分?若存在,请求出P点坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,矩形ABCO的顶点A、C分别在y轴、x轴正半轴上,点P在AB上,PA=1,AO=2.经过原点的抛物线y=mx2-x+n的对称轴是直线x=2.
(1)求出该抛物线的解析式.
(2)如图1,将一块两直角边足够长的三角板的直角顶点放在P点处,两直角边恰好分别经过点O和C.现在利用图2进行如下探究:
①将三角板从图1中的位置开始,绕点P顺时针旋转,两直角边分别交OA、OC于点E、F,当点E和点A重合时停止旋转.请你观察、猜想,在这个过程中,
PE
PF
的值是否发生变化?若发生变化,说明理由;若不发生变化,求出
PE
PF
的值.
②设(1)中的抛物线与x轴的另一个交点为D,顶点为M,在①的旋转过程中,是否存在点F,使△DMF为等腰三角形?若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.