当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知二次函数y=mx2+(m-3)x-3(m>0)的图象如图所示.(1)这条抛物线与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且...
题目
题型:不详难度:来源:
已知二次函数y=mx2+(m-3)x-3(m>0)的图象如图所示.
(1)这条抛物线与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且AB=4,⊙M过A、B、C三点,求扇形MAC的面积;
(2)在(1)的条件下,抛物线上是否存在点P,使△PBD(PD垂直于x轴,垂足为D)被直线BC分成面积比为1:2的两部分?若存在,请求出P点坐标;若不存在,请说明理由.
答案
(1)∵y=mx2+(m-3)x-3=(mx-3)(x+1),
∴x1=-1,x2=
3
m

∴AB=
3
m
-(-1)=4,
即m=1;
∴y=x2-2x-3,
得A(-1,0)、B(3,0)、C(0,-3),
∴∠OBC=45°,∠AMC=90°,
∵AC=


12+32
=


10

∵AM=CM,
∴AM=
AC


2
=


5

∴R=


5
,S=
5
4
π.

(2)设PD与BC的交点为E,可求直线BC解析式为y=x-3,
设P(x,x2-2x-3);当S△BED:S△BEP=1:2时,PD=3DE,
得-(x2-2x-3)=-3(x-3),解得x=2或3,





x=2
y=-3





x=3
y=0
(舍去),
∴P(2,-3);
当S△PBE:S△BED=1:2时,同理可得P(
1
2
,-
15
4
),
故存在P(2,-3)或P(
1
2
,-
15
4
).
核心考点
试题【已知二次函数y=mx2+(m-3)x-3(m>0)的图象如图所示.(1)这条抛物线与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
在平面直角坐标系xOy中,矩形ABCO的顶点A、C分别在y轴、x轴正半轴上,点P在AB上,PA=1,AO=2.经过原点的抛物线y=mx2-x+n的对称轴是直线x=2.
(1)求出该抛物线的解析式.
(2)如图1,将一块两直角边足够长的三角板的直角顶点放在P点处,两直角边恰好分别经过点O和C.现在利用图2进行如下探究:
①将三角板从图1中的位置开始,绕点P顺时针旋转,两直角边分别交OA、OC于点E、F,当点E和点A重合时停止旋转.请你观察、猜想,在这个过程中,
PE
PF
的值是否发生变化?若发生变化,说明理由;若不发生变化,求出
PE
PF
的值.
②设(1)中的抛物线与x轴的另一个交点为D,顶点为M,在①的旋转过程中,是否存在点F,使△DMF为等腰三角形?若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2-2x-8=0的两个根.
(1)求这条抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PEAC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;
(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,抛物线y=-x2+mx过点A(4,0),O为坐标原点,Q是抛物线的顶点.
(1)求m的值和顶点Q的坐标;
(2)设点P是x轴上方抛物线上的一个动点,过点P作PH⊥x轴,H为垂足,求折线P-H-O长度的最大值.
题型:不详难度:| 查看答案
农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈.
(1)请你求出张大伯矩形羊圈的面积;
(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计并说明理由.
题型:不详难度:| 查看答案
如图,在△ABC中,AB=AC=1,∠A=45°,边长为1的正方形的一个顶点D在边AC上,与△ABC另两边分别交于点E、F,DEAB,将正方形平移,使点D保持在AC上(D不与A重合),设AF=x,正方形与△ABC重叠部分的面积为y.
(1)求y与x的函数关系式并写出自变量x的取值范围;
(2)x为何值时y的值最大?
(3)x在哪个范围取值时y的值随x的增大而减小?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.