当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,4)和B(-2,0),连接AB.(1)现将△AOB绕点A按逆时针方向旋转90°得到△AO1B...
题目
题型:不详难度:来源:
如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,4)和B(-2,0),连接AB.
(1)现将△AOB绕点A按逆时针方向旋转90°得到△AO1B1,请画出△AO1B1,并直接写出点B1、O1的坐标(注:不要求证明);
(2)求经过B、A、O1三点的抛物线对应的函数关系式,并画出抛物线的略图.
答案
(1)如图,画出△AO1B1
B1(4,2),O1(4,4);(4分)

(2)设所求抛物线对应的函数关系式为y=a(x-m)2+n,
由AO1x轴,得m=2.
∴y=a(x-2)2+n.
∵抛物线经过点A、B,





4a+n=4
16a+n=0

解得





a=-
1
3
n=
16
3

∴所求抛物线对应的函数关系式为y=-
1
3
(x-2)2+
16
3

即y=-
1
3
x2+
4
3
x+4.(9分)
所画抛物线图象如图所示.(11分)
核心考点
试题【如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,4)和B(-2,0),连接AB.(1)现将△AOB绕点A按逆时针方向旋转90°得到△AO1B】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,已知平面直角坐标系xOy中,点A(m,6),B(n,1)为两动点,其中0<m<3,连接OA,OB,OA⊥OB.
(1)求证:mn=-6;
(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;
(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF:S△QOF=1:3?若存在,求出直线l对应的函数关系式;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知AB=2,C是AB上一点,四边形ACDE和四边形CBFG,都是正方形,设BC=x,
(1)AC=______;
(2)设正方形ACDE和四边形CBFG的总面积为S,用x表示S的函数表达式为S=______.
(3)总面积S有最大值还是最小值?这个最大值或最小值是多少?
(4)总面积S取最大值或最小值时,点C在AB的什么位置?
题型:不详难度:| 查看答案
如图所示,抛物线与x轴交于点A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3).以AB为直径作⊙M,过抛物线上一点P作⊙M的切线PD,切点为D,并与⊙M的切线AE相交于点E,连接DM并延长交⊙M于点N,连接AN、AD.
(1)求抛物线所对应的函数关系式及抛物线的顶点坐标;
(2)若四边形EAMD的面积为4


3
,求直线PD的函数关系式;
(3)抛物线上是否存在点P,使得四边形EAMD的面积等于△DAN的面积?若存在,求出点P的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
如图,抛物线y=x2-2x-2交x轴于A、B两点,顶点为C,经过A、B、C三点的圆的圆心为M.
(1)求圆心M的坐标;
(2)求⊙M上劣弧AB的长;
(3)在抛物线上是否存在一点D,使线段OC和MD互相平分?若存在,直接写出点D的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
抛物线y=ax2+bx+c(a≠0)交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为直线x=-1,B(1,0),C(0,-3).
(1)求二次函数y=ax2+bx+c(a≠0)的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到A、C两点距离之差最大?若存在,求出点P坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.