当前位置:初中试题 > 数学试题 > 二次函数的应用 > 在平面直角坐标系中,抛物线经过点(-2,0)(1,0)(0,2)(1)求二次函数的解析式;(2)写出顶点坐标和对称轴....
题目
题型:不详难度:来源:
在平面直角坐标系中,抛物线经过点(-2,0)(1,0)(0,2)
(1)求二次函数的解析式;
(2)写出顶点坐标和对称轴.
答案
(1)设二次函数的解析式是y=a(x+2)(x-1),
把(0,2)代入,得:
-2a=2,
解得a=-1,
∴y=-(x-1)(x+2)=-x2-x+2,

(2)根据公式法求得-
b
2a
=-
1
2
4ac-b2
4a
=
9
4

所以顶点坐标(1,
9
4
).
核心考点
试题【在平面直角坐标系中,抛物线经过点(-2,0)(1,0)(0,2)(1)求二次函数的解析式;(2)写出顶点坐标和对称轴.】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,已知二次函数y=ax2+bx+c的图象经过点A(-4,0),B(-1,3),C(-3,3)
(1)求此二次函数的解析式;
(2)设此二次函数的对称轴为直线l,该图象上的点P(m,n)在第三象限,其关于直线l的对称点为M,点M关于y轴的对称点为N,若四边形OAPN的面积为20,求m、n的值.
题型:不详难度:| 查看答案
如图1,已知直线y=
2
5
x+2与x轴交于点A,交y轴于C、抛物线y=ax2+4ax+b经过A、C两点,抛物线交x轴于另一点B.
(1)求抛物线的解析式;
(2)点Q在抛物线上,且有△AQC和△BQC面积相等,求点Q的坐标;
(3)如图2,点P为△AOC外接圆上
ACO
的中点,直线PC交x轴于D,∠EDF=∠ACO.当∠EDF绕D旋转时,DE交AC于M,DF交y轴负半轴于N、问CN-CM的值是否发生变化?若不变,求出其值;若变化,求出变化范围.
题型:不详难度:| 查看答案
如图,已知直线y=-
1
2
x+1交坐标轴于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.
(1)直接写出点C和点D的坐标,C(______)、D(______);
(2)求出过A,D,C三点的抛物线的解析式.
题型:不详难度:| 查看答案
如图,在△ABC中,AB=AC=5,以AB为直径的⊙P交BC于H.点A,B在x轴上,点H在y轴上,B点的坐标为(1,0).
(1)求点A,H,C的坐标;
(2)过H点作AC的垂线交AC于E,交x轴于F,求证:EF是⊙P的切线;
(3)求经过A,O两点且顶点到x轴的距离等于4的抛物线解析式.
题型:不详难度:| 查看答案
对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.
现有△ABM,A(-1,0),B(1,0).记过三点的二次函数抛物线为“C□□□”(“□□□”中填写相应三个点的字母)
(1)若已知M(0,1),△ABM≌△ABN(0,-1).请通过计算判断CABM与CABN是否为全等抛物线;
(2)在图2中,以A、B、M三点为顶点,画出平行四边形.
①若已知M(0,n),求抛物线CABM的解析式,并直接写出所有过平行四边形中三个顶点且能与CABM全等的抛物线解析式.
②若已知M(m,n),当m,n满足什么条件时,存在抛物线CABM根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与CABM全等的抛物线?若存在,请列出所有满足条件的抛物线“C□□□”;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.