当前位置:初中试题 > 数学试题 > 反比例函数的应用 > 如图,一次函数y=-13x+2的图象分别与x轴、y轴相交于A、B两点,点P为线段AB上一点,PC⊥x轴于点C,延长PC交反比例函数y=ky(x>0)的图象于点Q...
题目
题型:不详难度:来源:
如图,一次函数y=-
1
3
x+2
的图象分别与x轴、y轴相交于A、B两点,点P为线段AB上一点,PC⊥x轴于点C,延长PC交反比例函数y=
k
y
(x>0)
的图象于点Q,且tan∠OAQ=
1
3
.连接OP、OQ,四边形OQAP的面积为6.
(1)求k的值;
(2)判断四边形OQAP的形状,并加以证明.
答案
(1)连结AQ,如图,把x=0代入y=-
1
3
x+2
得y=2;把y=0代入y=-
1
3
x+2得-
1
3
x+2=0,解得x=6,
∴A点坐标为(6,0),B点坐标为(0,2),
∴tan∠BAO=
2
6
=
1
3

∵tan∠OAQ=
1
3

∴∠BAO=∠OQA,
∵PQ⊥OA,
∴CP=CQ,
∵四边形OQAP的面积为6,
1
2
PQ•OA=6,即
1
2
PQ•6=6,
∴PQ=2,
∴CQ=1,
在Rt△CAQ中,tan∠CAQ=
CQ
CA
=
1
3

∴CA=3,
∴OC=6-3=3,
∴Q点坐标为(3,-1),
把Q(3,-1)代入y=
k
x
得k=3×(-1)=-3;

(2)四边形OQAP为菱形.理由如下:
∵OC=AC=3,CP=CQ=1,
而PQ⊥AO,
∴四边形OQAP为菱形.
核心考点
试题【如图,一次函数y=-13x+2的图象分别与x轴、y轴相交于A、B两点,点P为线段AB上一点,PC⊥x轴于点C,延长PC交反比例函数y=ky(x>0)的图象于点Q】;主要考察你对反比例函数的应用等知识点的理解。[详细]
举一反三
如图,一次函数y=kx+4的图象与反比例函数y=
m
x
的图象交于点P、Q,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,OC=OA.
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.
题型:不详难度:| 查看答案
如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=
1
x
(x>0)的图象上,则点E的横坐标是______.
题型:不详难度:| 查看答案
如图,双曲线y=-
2
x
(x<0)
经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴负半轴的夹角,ABx轴,将△ABC沿AC翻折后得到△AB′C,B′点落在OA上,则四边形OABC的面积是______.
题型:不详难度:| 查看答案
若反比例函数y=
k-4
x
的图象在每个象限内y随x的增大而减小,则k的值可以为______(只需写出一个符合条件的k值即可).
题型:不详难度:| 查看答案
直线y=-x+m与双曲线y=
n
x
交于第四象限一点P(a,b),且a,b是一元二次方程x2-2x-3=0的两根.
(1)求一次函数、反比例函数的解析式;
(2)直线与双曲线的另一个交点为Q,求△POQ的面积(O为直角坐标系的原点).
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.