当前位置:高中试题 > 数学试题 > 不等式 > 用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)时,第一步验证n=1时,左边应取的项是______...
题目
题型:不详难度:来源:
用数学归纳法证明等式1+2+3+…+(n+3)=
(n+3)(n+4)
2
(n∈N+)
时,第一步验证n=1时,左边应取的项是______
答案
在等式1+2+3+…+(n+3)=
(n+3)(n+4)
2
(n∈N+)
中,
当n=1时,n+3=4,
而等式左边起始为1的连续的正整数的和,
故n=1时,等式左边的项为:1+2+3+4
故答案为:1+2+3+4
核心考点
试题【用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)时,第一步验证n=1时,左边应取的项是______】;主要考察你对不等式等知识点的理解。[详细]
举一反三
证明不等式1+
1


2
+
1


3
+…+
1


n
<2


n
(n∈N*
题型:云南难度:| 查看答案
用数学归纳法证明不等式:
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
>1(n∈N*且n.1).
题型:不详难度:| 查看答案
用数学归纳法证明不等式1+
1
2
+
1
4
+…+
1
2n-1
127
64
成立,起始值至少应取为(  )
A.7B.8C.9D.10
题型:不详难度:| 查看答案
已知α1,α2,…αn∈(0,π),n是大于1的正整数,求证:|sin(α12+…+αn)|<sinα1+sinα2+…+sinαn
题型:沈阳模拟难度:| 查看答案
用数学归纳法证明“1+
1
2
+
1
3
+…+
1
2n-1
<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是(  )
A.2k-1B.2k-1C.2kD.2k+1
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.