当前位置:高中试题 > 数学试题 > 向量求夹角 > 如图,四棱锥E-ABCD中,底面ABCD为正方形,EC⊥平面ABCD,AB=2,CE=1,G为AC与BD交点,F为EG中点,(Ⅰ)求证:CF⊥平面BDE;(Ⅱ)...
题目
题型:不详难度:来源:
如图,四棱锥E-ABCD中,底面ABCD为正方形,EC⊥平面ABCD,AB=


2
,CE=1,G为AC与BD交点,F为EG中点,
(Ⅰ)求证:CF⊥平面BDE;
(Ⅱ)求二面角A-BE-D的大小.
答案
(Ⅰ)证明:∵ABCD为正方形,AB=


2

∴AC=2,AC⊥BD,则CG=1=EC,
∵又F为EG中点,∴CF⊥EG.
∵EG⊥面ABCD,AC∩BD=G,BD⊥平面ECF,
∴CF⊥BDBD∩EG=G,∴CF⊥平面BDE (6分)
(Ⅱ)建立如图所示的空间直角坐标系C(0,0,0),F(


2
4


2
4
1
2
)
B(0,


2
,0)
[,A(


2


2
,0)
,E(0,0,1)
由(Ⅰ)知,


CF
=(


2
4


2
4
1
2
)
为平面BDE的一个法向量 (9分)
设平面ABE的法向量n=(x,y,z),
n•


BA
=0,n•


BE
=0





(


2
,0,0)(x,y,z)=0
(0,-


2
,1)(x,y,z)=0

x=0且z=


2
y
n=(0,1,


2
)
(11分)
从而cos<n,


CF
>=
n•


CF
|n|•|


CF
|
=


3
2
∴二面角A-BE-D的大小为
π
6
.(13分)
核心考点
试题【如图,四棱锥E-ABCD中,底面ABCD为正方形,EC⊥平面ABCD,AB=2,CE=1,G为AC与BD交点,F为EG中点,(Ⅰ)求证:CF⊥平面BDE;(Ⅱ)】;主要考察你对向量求夹角等知识点的理解。[详细]
举一反三
一个多面体的直观图及三视图分别如图1和图2所示(其中正视图和侧视图均为矩形,俯视图是直角三角形),M、N分别是AB1、A1C1的中点,MN⊥AB1


(Ⅰ)求实数a的值并证明MN平面BCC1B1
(Ⅱ)在上面结论下,求平面AB1C1与平面ABC所成锐二面角的余弦值.
题型:不详难度:| 查看答案
在边长为2的正方体ABCD-A′B′C′D′中,E是BC的中点,F是DD′的中点
(1)求证:CF平面A′DE
(2)求二面角E-A′D-A的平面角的余弦值.
题型:不详难度:| 查看答案
如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.ABCD,AB⊥BC,AB=2CD=2BC,EA⊥EB.
(Ⅰ)求证:AB⊥DE;
(Ⅱ)求直线EC与平面ABE所成角的正弦值;
(Ⅲ)线段EA上是否存在点F,使EC平面FBD?若存在,求出
EF
EA
;若不存在,说明理由.
题型:不详难度:| 查看答案
如图,所有棱长都为2的正三棱柱BCD-B′C′D′,四边形ABCD是菱形,其中E为BD的中点.
(1)求证:C′E面AB′D′;
(2)求面AB"D"与面ABD所成锐二面角的余弦值;
(3)求四棱锥B"-ABCD与D"-ABCD的公共部分体积.
题型:不详难度:| 查看答案
已知四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AD=1,AB=2,E、F分别是AB、PD的中点.
(1)求证:AF平面PEC;
(2)求二面角P-EC-D的大小.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.