当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > (本小题满分14分)如图,在三棱柱中,底面,,E、F分别是棱的中点.(1)求证:AB⊥平面AA1 C1C;(2)若线段上的点满足平面//平面,试确定点的位置,并...
题目
题型:不详难度:来源:
(本小题满分14分)

如图,在三棱柱中,底面,E、F分别是棱的中点.
(1)求证:AB⊥平面AA1 C1C;
(2)若线段上的点满足平面//平面,试确定点的位置,并说明理由;
(3)证明:⊥A1C.
答案
(1)详见解析;(2)是线段的中点;(3)详见解析.
解析

试题分析:(1)求证:AB⊥平面AA1 C1C,证明线面垂直,只需证明线线垂直,即在平面找两条直线与垂直,由已知平面,故,且,故可证得结论;(2)线段上的点满足平面平面,且面,面,由面面平行的性质可以得到,在中,已知的中点,由中位线定理,即可确定点的位置;(3)证明:⊥A1C,证明线线垂直,只需证明一条直线垂直于另一条直线所在的平面,注意到四边形是一个正方形,则,易证,可得平面,由(2)知平面平面,从而得平面,即可证得结论.
(1)底面,                          2分
.                  4分
(2)//面,面,面
//,                                     7分
是棱的中点,
是线段的中点.                                             8分
(3)三棱柱
侧面是菱形,,                            9分
由(1)可得,                              11分
.                                  12分
分别为棱的中点,//,                            13分
.                                          14分
核心考点
试题【(本小题满分14分)如图,在三棱柱中,底面,,E、F分别是棱的中点.(1)求证:AB⊥平面AA1 C1C;(2)若线段上的点满足平面//平面,试确定点的位置,并】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1.

(1)证明:A1C⊥平面BB1D1D;
(2)求平面OCB1与平面BB1D1D的夹角θ的大小.
题型:不详难度:| 查看答案
在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立的(  )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDE⊥平面ABC
D.平面PAE⊥平面ABC

题型:不详难度:| 查看答案
已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是(  )
A.AB∥m B.AC⊥m
C.AB∥β D.AC⊥β

题型:不详难度:| 查看答案
如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.

(1)求证:平面MOE∥平面PAC.
(2)求证:平面PAC⊥平面PCB.
(3)设二面角M—BP—C的大小为θ,求cos θ的值.
题型:不详难度:| 查看答案
如图,四棱柱ABCD—A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.

(1)证明B1C1⊥CE;
(2)求二面角B1­CE­C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.