题目
题型:不详难度:来源:
(1)证明B1C1⊥CE;
(2)求二面角B1CEC1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
答案
解析
(1)证明:易得=(1,0,-1),=(-1,1-1),于是·=0,所以B1C1⊥CE.
(2)=(1,-2,-1).
设平面B1CE的法向量m=(x,y,z),
则,即消去x,得y+2z=0,
不妨令z=1,可得一个法向量为m=(-3,-2,1).
由(1)知,B1C1⊥CE,又CC1⊥B1C1,
可得B1C1⊥平面CEC1,
故=(1,0,-1)为平面CEC1的一个法向量.
于是cos〈m,〉===,从而sin〈m,〉=.
所以二面角B1—CE—C1的正弦值为.
(3)=(0,1,0),=(1,1,1).
设=λ=(λ,λ,λ),0≤λ≤1,有=+=(λ,λ+1,λ).
可取=(0,0,2)为平面ADD1A1的一个法向量.
设θ为直线AM与平面ADD1A1所成的角,则
sin θ=|cos〈,〉|=
==,
于是=,解得λ=(负值舍去),
所以AM=.
核心考点
试题【如图,四棱柱ABCD—A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
(1)求证:MQ∥平面PAB;
(2)若AN⊥PC,垂足为N,求证:MN⊥PD.
A.平面α与平面β垂直
B.平面α与平面β所成的(锐)二面角为45°
C.平面α与平面β平行
D.平面α与平面β所成的(锐)二面角为60°
(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;
(Ⅲ)若G满足PC⊥面BGD,求的值.
(1)若点M是棱PC的中点,求证:PA∥平面BMQ;
(2)若二面角M—BQ—C为30°,设PM=tMC,试确定t的值.
最新试题
- 1△ABC和△A′B′C′关于点O对称,下列结论不正确的是[ ]A.AO=A′OB.AB∥A′B′C.CO=BOD
- 2下列属于植物的有性生殖的是( )A.土豆发芽B.苹果的嫁接C.葡萄扦插D.桃树的开花结果
- 3在△ABC中,若则A = .
- 4随着互联网的快速发展,近年来网络谣言也在滋生蔓延。它不仅败坏个人名誉,给受害人造成极大的精神困扰,也损害国家形象,影响社
- 5“我们现在赖以进行现代化建设的物质技术基础,很大一部分是这个期间建设起来的。全国经济文化建设等方面的骨干力量和他们的工作
- 6阅读下面的文字,完成后面题目。(9分)视觉文化在现代引起了很多学科领域的学者的重视,艺术家、社会学家、美学家、哲学家都从
- 7某男孩患有21三体综合征,其原因是与卵细胞融合的精子中对号染色体是一对,请分拆下列与精子形成相关的原因是[ ]A
- 8读“长江流域及其附近地区酸雨污染状况图”,回答下列问题:(1)填出图中A、B、C三片酸雨区名称:A___________
- 9如图所示的现象中,由于光的直线传播形成的是( )A.亭子在水中成像B.蜡烛通过小孔成像C.玩具虎在镜中成像D.美羊羊图
- 10平行于同一个平面的两条直线,它们的空间位置关系为( )A.平行B.相交C.异面D.以上三种均有可能
热门考点
- 1向pH为10的烧碱溶液中加入下列物质,混合后溶液的pH可能会增大的是( )A.纯水B.少量的氢氧化钠固体C.氯化钠溶液
- 2听句子,选择符合题意的图片。l. What does the girl"s father want her to be?
- 3名著阅读:(2分)马克·吐温是美国现实主义文学的杰出代表。他的作品《汤姆·索亚历险记》是一部童趣盎然的作品,他成功地通过
- 4下列属于我国的基本国策的是[ ]①对外开放②计划生育③科教兴国④保护环境A.①②③④B.①②④C.①②③D.②③
- 5火车总质量为1000t,在行驶中功率保持4200kW不变,所受阻力为1×105N,求:(1)火车加速度为2m/s2时的速
- 6某同学家中有一台额定电压为220V、额定功率为200W的电冰箱.在2006年的“五一”黄金周期间,他全家外出旅游了2天(
- 7某校物理实验兴趣小组的几位同学在探究“影响物体重力大小的因素”实验中,进行了如下的实验探究:第一组:探究“物体重力的大小
- 8小明骑自行车去上学,他在前一半路程的速度为4m/s,他感觉要迟到了,便用6m/s的速度走完了后一半路程,那么他在整个路程
- 9Wouldn’t you feel rather________if you rushed to the airport
- 10在括号里填上和为1的两个正数,使1()+9() 的值最小,则这两个正数的积等于______.