当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.(1)求证:平面M...
题目
题型:不详难度:来源:
如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.

(1)求证:平面MOE∥平面PAC.
(2)求证:平面PAC⊥平面PCB.
(3)设二面角M—BP—C的大小为θ,求cos θ的值.
答案
(1)见解析  (2)见解析  (3)
解析
(1)因为点E为线段PB的中点,点O为线段AB的中点,所以OE∥PA.
因为PA⊂平面PAC,OE⊄平面PAC,
所以OE∥平面PAC.
因为OM∥AC,
因为AC⊂平面PAC,OM⊄平面PAC,
所以OM∥平面PAC.
因为OE⊂平面MOE,OM⊂平面MOE,OE∩OM=O,
所以平面MOE∥平面PAC.
(2)因为点C在以AB为直径的⊙O上,
所以∠ACB=90°,即BC⊥AC.
因为PA⊥平面BAC,BC⊂平面ABC,
所以PA⊥BC.
因为AC⊂平面PAC,PA⊂平面PAC,PA∩AC=A,
所以BC⊥平面PAC.
因为BC⊂平面PCB,
所以平面PAC⊥平面PCB.
(3)如图,以C为原点,CA所在的直线为x轴,CB所在的直线为y轴,建立空间直角坐标系C—xyz.

因为∠CBA=30°,PA=AB=2,
所以CB=2cos 30°=,AC=1.
延长MO交CB于点D.
因为OM∥AC,
所以MD⊥CB,MD=1+
CD=CB=.
所以P(1,0,2),C(0,0,0),B(0,,0),M.
所以=(1,0,2),=(0,,0).
设平面PCB的法向量m=(x,y,z).
因为
所以,即
令z=1,则x=-2,y=0.
所以m=(-2,0,1).
同理可求平面PMB的一个法向量n=(1,,1).
所以cos〈m,n〉==-.
因为二面角M—BP—C为锐二面角,所以cos θ=.
核心考点
试题【如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.(1)求证:平面M】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
如图,四棱柱ABCD—A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.

(1)证明B1C1⊥CE;
(2)求二面角B1­CE­C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

题型:不详难度:| 查看答案
如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.
(1)求证:MQ∥平面PAB;
(2)若AN⊥PC,垂足为N,求证:MN⊥PD.

题型:不详难度:| 查看答案
(2013•浙江)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则(  )
A.平面α与平面β垂直
B.平面α与平面β所成的(锐)二面角为45°
C.平面α与平面β平行
D.平面α与平面β所成的(锐)二面角为60°
题型:不详难度:| 查看答案
(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.
(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;
(Ⅲ)若G满足PC⊥面BGD,求的值.

题型:不详难度:| 查看答案
如图所示,PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.