当前位置:高中试题 > 数学试题 > 空间向量的基本概念 > 如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.求证:(1)AM∥平面BDE;(2)AM⊥平面BDF....
题目
题型:不详难度:来源:
如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.
答案
(1)见解析(2)见解析
解析
(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连结NE.

则N,E(0,0,1),A(,0),M.
.
且NE与AM不共线.∴NE∥AM.
∵NE平面BDE,AM平面BDE,∴AM∥平面BDE.
(2)由(1)知
∵D(,0,0),F(,1),∴=(0,,1),
·=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.
核心考点
试题【如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.求证:(1)AM∥平面BDE;(2)AM⊥平面BDF.】;主要考察你对空间向量的基本概念等知识点的理解。[详细]
举一反三
如右图,在棱长为a的正方体ABCDA1B1C1D1中,G为△BC1D的重心,

(1)试证:A1、G、C三点共线;
(2)试证:A1C⊥平面BC1D;
题型:不详难度:| 查看答案
如图,圆锥的高PO=4,底面半径OB=2,D为PO的中点,E为母线PB的中点,F为底面圆周上一点,满足EF⊥DE.

(1)求异面直线EF与BD所成角的余弦值;
(2)求二面角OOFE的正弦值.
题型:不详难度:| 查看答案
如图所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.
题型:不详难度:| 查看答案
设A1、A2、A3、A4、A5是空间中给定的5个不同的点,则使=0成立的点M的个数为________.
题型:不详难度:| 查看答案
若平面α的一个法向量为n=(4,1,1),直线l的一个方向向量为a=(-2,-3,3),则l与α所成角的正弦值为________.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.