当前位置:高中试题 > 数学试题 > 空间向量的基本概念 > 如图,是以为直径的半圆上异于、的点,矩形所在的平面垂直于半圆所在的平面,且.(1)求证:;(2)若异面直线和所成的角为,求平面与平面所成的锐二面角的余弦值....
题目
题型:不详难度:来源:
如图,是以为直径的半圆上异于的点,矩形所在的平面垂直于半圆所在的平面,且.

(1)求证:
(2)若异面直线所成的角为,求平面与平面所成的锐二面角的余弦值.
答案
(1)证明过程详见解析;(2).
解析

试题分析:本题主要考查线线垂直、线面垂直、面面垂直、二面角、向量法等基础知识,考查学生的空间想象能力、逻辑推理能力和计算能力.第一问,先利用面面垂直的性质得到线面垂直垂直于圆所在的平面,再利用线面垂直的性质得到,而在圆内AB为直径,所以,利用线面垂直的判定得平面,最后利用线面垂直的性质得到结论;第二问,利用向量法,先根据已知条件中的垂直关系建立空间直角坐标系,得到有关点及向量的坐标,利用向量法中的公式,求出平面DCE和平面AEB的法向量,再利用夹角公式求夹角的余弦值.
试题解析:(1)∵平面垂直于圆所在的平面,两平面的交线为平面,∴垂直于圆所在的平面.又在圆所在的平面内,∴.∵是直角,∴,∴平面,∴.    6分
(2)如图,

以点为坐标原点,所在的直线为轴,过点平行的直线为轴,建立空间直角坐标系.由异面直线所成的角为
,∴,由题设可知,∴.设平面的一个法向量为
,取,得.
.又平面的一个法向量为,∴.
平面与平面所成的锐二面角的余弦值.    13分
(其他解法可参考给分)
核心考点
试题【如图,是以为直径的半圆上异于、的点,矩形所在的平面垂直于半圆所在的平面,且.(1)求证:;(2)若异面直线和所成的角为,求平面与平面所成的锐二面角的余弦值.】;主要考察你对空间向量的基本概念等知识点的理解。[详细]
举一反三
如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱AB上的动点.

(1)求证:DA1ED1
(2)若直线DA1与平面CED1成角为45o,求的值;
(3)写出点E到直线D1C距离的最大值及此时点E的位置(结论不要求证明).
题型:不详难度:| 查看答案
如图,四棱锥的底面是正方形,侧棱底面,过垂直点,作垂直点,平面点,且.

(1)设点上任一点,试求的最小值;
(2)求证:在以为直径的圆上;
(3)求平面与平面所成的锐二面角的余弦值.
题型:不详难度:| 查看答案
如图,等腰梯形ABCD,AD//BC,P是平面ABCD外一点,P在平面ABCD的射影O恰在AD上,.

(1)证明:
(2)求二面角A-BP-D的余弦值.
题型:不详难度:| 查看答案
在长方体ABCDA1B1C1D1中,,点E是棱AB上一点.且

(1)证明:
(2)若二面角D1ECD的大小为,求的值.
题型:不详难度:| 查看答案
如图,在长方体中,在棱上.

(1)求异面直线所成的角;
(2)若二面角的大小为,求点到平面的距离.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.