当前位置:高中试题 > 数学试题 > 四种命题的概念 > 下列命题中的假命题是(  )A.∃x∈R,lgx=0B.∃x∈R,tanx=1C.∀x∈R,x3>0D.∀x∈R,2x>0...
题目
题型:湖南难度:来源:
下列命题中的假命题是(  )
A.∃x∈R,lgx=0B.∃x∈R,tanx=1
C.∀x∈R,x3>0D.∀x∈R,2x>0
答案
A、x=1成立;B、x=
π
4
成立;D、由指数函数的值域来判断.对于C选项x=-1时,(-1)3=-1<0,不正确.
故选C
核心考点
试题【下列命题中的假命题是(  )A.∃x∈R,lgx=0B.∃x∈R,tanx=1C.∀x∈R,x3>0D.∀x∈R,2x>0】;主要考察你对四种命题的概念等知识点的理解。[详细]
举一反三
下列命题是假命题的是(  )
A.命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1”
B.若命题p:∀x∈R,x2+x+1≠0,则¬p:∃x∈R,x2+x+1=0
C.若p∨q为真命题,则p,q均为真命题
D.“x>2”是“x2-3x+2>0”的充分不必要条件
题型:安徽模拟难度:| 查看答案
下列结论错误的是(  )
A.若”p∧q”与”¬p∨q”均为假命题,则p真q假
B.命题”∃x∈R,x2-x>0”的否定是”∀x∈R,x2-x≤0”
C.”x=1”是”x2-3x+2=0”充分不必要条件
D.若”am2<bm2,则a<b”的逆命题为真
题型:不详难度:| 查看答案
设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.
(1)记集合M={(a,b,c)|a,b,c不能构成一个三角形的三条边长,且a=b},则(a,b,c)∈M所对应的f(x)的零点的取值集合为______.
(2)若a,b,c是△ABC的三条边长,则下列结论正确的是______.(写出所有正确结论的序号)
①∀x∈(-∞,1),f(x)>0;
②∃x∈R,使ax,bx,cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,则∃x∈(1,2),使f(x)=0.
题型:湖南难度:| 查看答案
已知命题p:“∀x∈[0,1],a≥ex”,命题q:“∃x∈R,x2+4x+a=0”,若命题“p∧q”是真命题,则实数a的取值范围是(  )
A.[e,4]B.[1,4]C.(4,+∞)D.(-∞,1]
题型:江西模拟难度:| 查看答案
设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的“l高调函数”.现给出下列命题:
①函数f(x)=2x为R上的“1高调函数”;
②函数f(x)=sin2x为R上的“A高调函数”;
③如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上“m高调函数”,那么实数m的取值范围是[2,+∞);
其中正确的命题是______.(写出所有正确命题的序号)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.