当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > 某部队进行射击训练,每个学员最多只能射击4次,学员如有2次命中目标,那么就不再继续射击;假设某学员每次命中目标的概率都是,每次射击互相独立.(1)求该学员在前两...
题目
题型:江苏同步题难度:来源:
某部队进行射击训练,每个学员最多只能射击4次,学员如有2次命中目标,那么就不再继续射击;假设某学员每次命中目标的概率都是,每次射击互相独立.
(1)求该学员在前两次射击中至少有一次命中目标的概率;
(2)记该学员射击的次数为X,求X的分布列及X的数学期望.
答案
解:(1)记“该学员在前两次射击中至少有一次命中目标”的事件为事件A,
.     
答:该学员在前两次射击中至少有一次命中目标的概率为
(2)该学员射击的次数X可能取值为2,3,4,



故的分布列为:

所以X的数学期望:
核心考点
试题【某部队进行射击训练,每个学员最多只能射击4次,学员如有2次命中目标,那么就不再继续射击;假设某学员每次命中目标的概率都是,每次射击互相独立.(1)求该学员在前两】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投篮一次命中得3分,未命中得﹣1分,求乙所得分数ξ的概率分布和数学期望.
题型:四川省月考题难度:| 查看答案
如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有第一条的为第一层,有二条的为第二层,…,依次类推.现有一颗小弹子从第一层的通道里向下运动.记小弹子落入第n层第m个竖直通道(从左至右)的概率为P(n,m).(已知在通道的分叉处,小弹子以相同的概率落入每个通道)
(Ⅰ)求P(2,1),P(3,2)的值,并猜想P(n,m)的表达式.(不必证明)
(Ⅱ)设小弹子落入第6层第m个竖直通道得到分数为ξ,其中ξ=,试求ξ的分布列及数学期望.
题型:江西省月考题难度:| 查看答案
一个口袋中装有大小和质地都相同的白球和红球共7个,其中白球个数不少于红球个数.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为随机变量X.若P(X=2)=
(1)求口袋中的白球个数;
(2)求X的概率分布与数学期望.
题型:江苏期末题难度:| 查看答案
以下茎叶图记录了甲、乙两组个四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.
(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;
(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望.
(注:方差,其中为x1,x2,…xn的平均数)
题型:江苏同步题难度:| 查看答案
一个袋中装有黑球,白球和红球共n(n∈N*)个,这些球除颜色外完全相同.已知从袋中任意摸出1个球,得到黑球的概率是 .现从袋中任意摸出2个球.
(1)若n=15,且摸出的2个球中至少有1个白球的概率是 ,设ξ表示摸出的2个球中红球的个数,求随机变量ξ的概率分布及数学期望Eξ;
(2)当n取何值时,摸出的2个球中至少有1个黑球的概率最大,最大概率为多少?  
题型:江苏月考题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.