当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > 从一批含有13只正品,2只次品的产品中,不放回地抽取3次,每次抽取1只,设抽得次品数为X,则E(5X+1)=______....
题目
题型:不详难度:来源:
从一批含有13只正品,2只次品的产品中,不放回地抽取3次,每次抽取1只,设抽得次品数为X,则E(5X+1)=______.
答案
由题意,X的取值为0,1,2,则
P(X=0)=
13
15
×
12
14
×
11
13
=
22
35
;P(X=1)=
2
15
×
13
14
×
12
13
+
13
15
×
2
14
×
12
13
+
13
15
×
12
14
×
2
13
=
12
35

P(X=2)=
13
15
×
2
14
×
1
13
+
2
15
×
13
14
×
1
13
+
2
15
×
1
14
×
13
13
=
1
35

所以期望E(X)=0×
22
35
+1×
12
35
+2×
1
35
=
14
35

所以E(5X+1)=
14
35
×5+1
=3
故答案为3.
核心考点
试题【从一批含有13只正品,2只次品的产品中,不放回地抽取3次,每次抽取1只,设抽得次品数为X,则E(5X+1)=______.】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
某厂一批产品的合格率是98%,检验单位从中有放回地随机抽取10件,则计算抽出的10件产品中正品数的方差是______.
题型:不详难度:| 查看答案
用一枚质地均匀的硬币,甲、乙两人做抛掷硬币游戏,甲抛掷4次,记正面向上的次数为ξ;乙抛掷3次,记正面向上的次数为η.
(Ⅰ)分别求ξ和η的期望;
(Ⅱ)规定:若ξ>η,则甲获胜;否则,乙获胜.求甲获胜的概率.
题型:重庆二模难度:| 查看答案
篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求
(1)他罚球1次的得分X的数学期望;
(2)他罚球2次的得分Y的数学期望;
(3)他罚球3次的得分η的数学期望.
题型:不详难度:| 查看答案
某科目考试有30道题每小题有三个选项,每题2分,另有20道题,每题有四个选项每题3分,每题只有一个答案,某人随机去选答案,则平均能得______分.
题型:不详难度:| 查看答案
已知随机变量X的分布列是:(   )
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
X4a910
P0.30.1b0.2