在一次国际大型体育运动会上,某运动员报名参加了其中5个项目的比赛.已知该运动员在这5个项目中,每个项目能打破世界纪录的概率都是0.8,那么在本次运动会上: (Ⅰ)求该运动员至少能打破3项世界纪录的概率; (Ⅱ)若该运动员能打破世界纪录的项目数为ξ,求ξ的数学期望Eξ(即均值). |
核心考点
试题【在一次国际大型体育运动会上,某运动员报名参加了其中5个项目的比赛.已知该运动员在这5个项目中,每个项目能打破世界纪录的概率都是0.8,那么在本次运动会上:(Ⅰ)】;主要考察你对
独立重复试验等知识点的理解。
[详细]
举一反三
某电台“挑战主持人,’节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个题目,回答正确得20分,回答不正确得-10分,总得分不少于30分即可过关.如果一位挑战者回答前两题正确的概率都是,回答第三题正确的概率为,且各题回答正确与否相互之间没有影响.记这位挑战者回答这三个问题的总得分为ξ. (1)这位挑战者过关的概率有多大? (2)求ξ的数学期望. |
一次数学考试中共有10道选择题,每道选择题有4个选项,其中有且仅有一个是正确的.评分标准规定:“每题只选1项,答对得5分,不答或答错得0分.”某考生每道题都给出了一个答案,已经确定有7道题的答案是正确的,而其余题中,有两道可以判断出一个选项是错误的,还有一道题因完全不会做只能乱猜,试求出该考生: (1)得50分的概率; (2)所得分数ξ的分布列与数学期望. |
某篮球选手每次投篮命中的概率为,各次投篮相互独立,令此选手投篮n次的命中率为an(an为进球数与n之比),则事件“a6=,an≤,n=1,2,3,4,5”发生的概率为( ) |