当前位置:高中试题 > 数学试题 > 古典概型的概念及概率 > 一个袋中装有形状大小完全相同的球9个,其中红球3个,白球6个,每次随机取1个,直到取出3次红球即停止.(1)从袋中不放回地取球,求恰好取4次停止的概率P1;(2...
题目
题型:不详难度:来源:
一个袋中装有形状大小完全相同的球9个,其中红球3个,白球6个,每次随机取1个,直到取出3次红球即停止.
(1)从袋中不放回地取球,求恰好取4次停止的概率P1
(2)从袋中有放回地取球.
①求恰好取5次停止的概率P2
②记5次之内(含5次)取到红球的个数为,求随机变量的分布列及数学期望.
答案
(1)  (2) ①
解析

试题分析:(1)从袋中不放回地取球,连续取4次,有个不同的结果,由于是随机取的,每个结果出现的可能性是相等的,恰好取4次停止,说明前三次有一次是白球,共有个不同的结果,所以,根据古典概型的概率公式得
(2) 从袋中有放回地取球,每次取到红球的概率 ,取到白球的概率是 连续有放回地取 次,相当于次独立重复试验;
①求恰好取5次停止的概率P2;说明前四次有两次发生,第五次一定发生;
②记5次之内(含5次)取到红球的个数为,随机变量的所以可能取值集合是 
次独立重复试验概率公式即可求出随机变量分布列,并由数学期望的公式计算出.
试题解析:
解:(1)                              4分
(2)①                          6分
②随机变量的取值为
次独立重复试验概率公式,得




随机变量的分布列是

0
1
2
3





的数学期望是
                      12分
核心考点
试题【一个袋中装有形状大小完全相同的球9个,其中红球3个,白球6个,每次随机取1个,直到取出3次红球即停止.(1)从袋中不放回地取球,求恰好取4次停止的概率P1;(2】;主要考察你对古典概型的概念及概率等知识点的理解。[详细]
举一反三
一个袋中装有5个形状大小完全相同的球,其中有2个红球,3个白球.
(1)从袋中随机取两个球,求取出的两个球颜色不同的概率;
(2)从袋中随机取一个球,将球放回袋中,然后再从袋中随机取一个球,求两次取出的球中至少有一个红球的概率.
题型:不详难度:| 查看答案
从5男3女8位志愿者中任选3人参加冬奥会火炬接力活动,所选3人中恰有两位女志愿者的概率是          
题型:不详难度:| 查看答案
爸爸和亮亮用4张扑克牌(方块2,黑桃4,黑桃5,梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,爸爸先抽,亮亮后抽,抽出的牌不放回.

(1)若爸爸恰好抽到了黑桃4.
①请把右面这种情况的树形图绘制完整;
②求亮亮抽出的牌的牌面数字比4大的概率.
(11)爸爸、亮亮约定,若爸爸抽到的牌的牌面数字比亮亮的大,则爸爸胜;反之,则亮亮赢,你认为这个游戏是否公平?如果公平,请说明理由,如果不公平,更换一张扑克牌使游戏公平.
题型:不详难度:| 查看答案
如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,则它的涂漆面数为2的概率(  )
 
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A.B.C.D.
口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1.若从袋中摸出5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是________.