题目
题型:不详难度:来源:
(1)从袋中随机取两个球,求取出的两个球颜色不同的概率;
(2)从袋中随机取一个球,将球放回袋中,然后再从袋中随机取一个球,求两次取出的球中至少有一个红球的概率.
答案
解析
试题分析:(1)此概率问题属古典概型,借助字母,列出从装有5个球的袋子中随机取出两个球的十种情况,由于是随机取的,每个结果出现的可能性是相等的,符合古典概型的特征,然后设事件 “取出的两个球颜色不同”,计算出事件A所包含的基本事件的个数,可由
(2)与(1)不同,从袋中随机取一个球,将球放回袋中,然后再从袋中随机取一个球,一共有25个结果,由于是随机取的,每个结果出现的可能性是相等的,根据所罗列出的25种结果,可知至少有一个红球的结果有16个,由古典概型的概率公式可得所求概率.
试题解析:
解:(1)2个红球记为 ,3个白球记为
从袋中随机取两个球,其中一切可能的结果组成的基本事件有: ,,,,,,, ,,共10个 2分
设事件 “取出的两个球颜色不同”
中的基本事件有:
,,,,共6个 4分
6分
(2)从袋中随机取一个球,将球放回袋中,然后再从袋中随机取一个球,其一切可能的结果组成的基本事件有: , ,,,, , ,,,,
, ,,,, , ,,,,
, ,,,共25个. 8分
设事件 “两次取出的球中至少有一个红球”
中的基本事件有:
, ,,,, , ,,,,
, , , , ,共16个. 10分
所以 . 12分
核心考点
试题【一个袋中装有5个形状大小完全相同的球,其中有2个红球,3个白球.(1)从袋中随机取两个球,求取出的两个球颜色不同的概率;(2)从袋中随机取一个球,将球放回袋中,】;主要考察你对古典概型的概念及概率等知识点的理解。[详细]
举一反三
(1)若爸爸恰好抽到了黑桃4.
①请把右面这种情况的树形图绘制完整;
②求亮亮抽出的牌的牌面数字比4大的概率.
(11)爸爸、亮亮约定,若爸爸抽到的牌的牌面数字比亮亮的大,则爸爸胜;反之,则亮亮赢,你认为这个游戏是否公平?如果公平,请说明理由,如果不公平,更换一张扑克牌使游戏公平.