当前位置:高中试题 > 数学试题 > 随机事件的概率 > 已知一颗粒子等可能地落入如右图所示的四边形内的任意位置,如果通过大量的实验发现粒子落入△内的频率稳定在附近,那么点和点到时直线的距离之比约为(    )A.B....
题目
题型:不详难度:来源:
已知一颗粒子等可能地落入如右图所示的四边形内的任意位置,如果通过大量的实验发现粒子落入△内的频率稳定在附近,那么点和点到时直线的距离之比约为(    )
A.B.C.D.

答案
D
解析

试题分析:设粒子落入△BCD内的频率为P1粒子落入△BAD内的频率为P2
点A和点C到时直线BD的距离d1,d2根据题意:P2=1-P1=1-=,然后根据
P1=,P2=,P2:P1= d2: d1=3:2,故选D.
点评:解决该试题的关键是先明确是几何概型中的面积类型,称设粒子落入△BCD内的频率为P1粒子落入△BAD内的频率为P2,点A和点C到时直线BD的距离d1,d2求得P2,利用其面积之比即为概率之比,再由三角形共底,求得高之比.
核心考点
试题【已知一颗粒子等可能地落入如右图所示的四边形内的任意位置,如果通过大量的实验发现粒子落入△内的频率稳定在附近,那么点和点到时直线的距离之比约为(    )A.B.】;主要考察你对随机事件的概率等知识点的理解。[详细]
举一反三
(本题满分13分)
某俱乐部举行迎圣诞活动,每位会员交50元活动费,可享受20元的消费,并参加一次游戏:掷两颗正方体骰子,点数之和为12点获一等奖,奖价值为a元的奖品;点数之和为11或10点获二等奖,奖价值为100元的奖品;点数之和为9或8点获三等奖,奖价值为30元的奖品;点数之和小于8点的不得奖。求:
(1)同行的两位会员中一人获一等奖、一人获二等奖的概率;
(2)如该俱乐部在游戏环节不亏也不赢利,求a的值。
题型:不详难度:| 查看答案
如图,大正方形的面积是13,四个全等的直角三角形围成一个小正方形.直角三角形的较短边长为2.向大正方形内投一飞镖,则飞镖落在小正方形内的概率为(   )
A.B.C.D.

题型:不详难度:| 查看答案
(本小题满分12分)
已知集合,集合
集合
(1)列举出所有可能的结果;
(2)从集合中任取一个元素,求“”的概率
(3)从集合中任取一个元素,求“”的概率.
题型:不详难度:| 查看答案
先后抛掷两颗骰子,设出现的点数之和是10,11,12的概率依次是P1,P2,P3,则(   )
A.P1>P2>P3B.P1>P2=P3C.P1=P2>P3D.P1=P2<P3

题型:不详难度:| 查看答案
(本小题满分10分)某网站欲调查网民对当前网页的满意程度,在登录的所有网民中,收回有效帖子共50000份,其中持各种态度的份数如下表所示.
很满意
满意
一般
不满意
10800
12400
15600
11200
为了调查网民的具体想法和意见,以便决定如何更改才能使网页更完美,打算从中抽选500份,为使样本更具有代表性,每类帖子中各应抽选出多少份?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.